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Abstract— If robots could reliably manipulate the shape of
3D deformable objects, they could find applications in fields
ranging from home care to warehouse fulfillment to surgical
assistance. Analytic models of elastic, 3D deformable objects
require numerous parameters to describe the potentially infinite
degrees of freedom present in determining the object’s shape.
Previous attempts at performing 3D shape control rely on
hand-crafted features to represent the object shape and require
training of object-specific control models. We overcome these
issues through the use of our novel DeformerNet neural network
architecture, which operates on a partial-view point cloud of
the object being manipulated and a point cloud of the goal
shape to learn a low-dimensional representation of the object
shape. This shape embedding enables the robot to learn to
define a visual servo controller that provides Cartesian pose
changes to the robot end-effector causing the object to deform
towards its target shape. Crucially, we demonstrate both in
simulation and on a physical robot that DeformerNet reliably
generalizes to object shapes and material stiffness not seen
during training and outperforms comparison methods for both
the generic shape control and the surgical task of retraction.

I. INTRODUCTION

Manipulation of 3D deformable objects stands at the heart
of many tasks we wish to assign to autonomous robots. For
example, home-assistance robots must be able to manipulate
objects such as sponges, mops, bedding, and food to help
people with day-to-day life. Robots operating in warehouses
should safely handle deformable containers such as bags
and boxes in order to package outgoing orders. Factory
robots benefit from the ability to remove deformable objects
from containers. Most critically, surgical assistive robots are
required to safely and precisely manipulate deformable tissue
and organs.

However, 3D deformable object manipulation presents
many challenges [1]. The shape of deformable objects require
a potentially infinite number of degrees of freedom (DOF)
to describe, compared to only 6 DOF for rigid objects. As
a result, deriving low-dimensional but accurate and expres-
sive state representations for deformable objects is difficult.
An additional challenge compared with simpler linear de-
formable objects such as ropes and cloth arises as elastic
3D deformable objects cannot be released without returning
to their initial configuration. Further, deformable objects
frequently have complex dynamics [2], making the process of
deriving a model laborious and potentially computationally
intensive. These issues all present themselves in the specific
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Fig. 1: Example initial and final configurations of object shape
control via shape servo with DeformerNet on a physical robot using
a laparoscopic tool. We visualize in red the goal point clouds given
to the controller.

problem we examine in this work: 3D deformable object
shape control. The shape control problem requires a robot to
manipulate the internal DOF of a 3D deformable object to
reach a desired shape.

While rigid-body manipulation has received a large
amount of study [3], due to the challenges listed above,
autonomous 3D deformable object manipulation currently
still remains an under-researched area [1, 4]—despite its
potential relevance and need. Existing work for 3D de-
formable shape control leverages hard-coded feature vectors
to describe deformable object state [5], which struggles to
represent large sets of shapes. While learning-based methods
show great promise in both rigid [6, 7] and deformable
object manipulation [4, 8], these methods require a large
amount of training data. Due to the difficulty of accurately
simulating deformable objects, existing methods for shape
control rely on data gathered via real-world setups, limiting
the efficacy of learning-based approaches. Further, the ability
to successfully manipulate deformable material is heavily
dependent on where the robot grasps an object, however
current works do not provide methods for selecting grasping
points conditioned on the desired post-grasp manipulation.

In this work, we take steps toward addressing each of these
gaps in the context of 3D deformable shape control. Our
method takes as input a partial-view point cloud representa-
tion of a 3D deformable object and a desired goal shape. We
build our method around a novel neural-network architecture,
DeformerNet, which is trained on a large amount of data
gathered via a recently-developed high-fidelity deformable
object simulator, Isaac Gym [4, 9, 10].

Our method first reasons over the initial and target shape
to select a manipulation point. Following selection of this
grasp point, DeformerNet takes as input the current and
target point clouds of the object, embeds the shape into a
low-dimensional latent space representation, and computes
a change in end-effector position that moves the object
closer to the goal shape. The robot executes this motion
and proceeds in a closed-loop fashion generating commands
from DeformerNet until reaching the desired goal shape.
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Figure 1 shows the initial and final configurations from
an example manipulation using DeformerNet on a physical
robot. Our results provide the first empirical demonstration
of the importance of manipulation point selection for 3D
shape control.

We focus our evaluation on the surgical robotics domain.
We task a robot with manipulating three classes of object
primitives into a variety of goal shapes using a laparoscopic
tool. Unlike the preliminary results presented in our previous
workshop paper [11] we vary the dimensions and the stiffness
properties of the objects. We demonstrate effective manipu-
lation on test objects both in simulation and on a physical
robot. Importantly we show that our method can manipulate
objects that fall both inside and outside the distributions of
object shape and stiffness seen in training. We show that our
DeformerNet outperforms both a sampling-based strategy
and a model-free reinforcement learning approach on the
shape control task.

We additionally present a strategy for applying our method
to the common surgical task of retraction where we simplify
the need of a target shape to only specifying a plane which
the deformable tissue needs to be on one side of. We
demonstrate successful retraction both in simulation and on
the physical robot. We make available all code and data
associated with this paper at https://sites.google.
com/view/deformernet/home.

II. RELATED WORK

Many approaches leverage machine learning with point
cloud sensing to manipulate 3D rigid objects [6, 7, 12–15].
Authors have proposed various neural network architectures
to encode object shape to achieve varying tasks such as
grasp planing [6, 7, 14, 15], collision checking [12], shape
completion [15], and object pose estimation [13]. In this
work, we build upon these concepts to apply a learning-
based approach which reasons over point cloud sensing with
learned feature vectors to manipulate 3D deformable objects.

Solutions to 3D deformable object shape control [1] can be
categorized into learning-based and learning-free approaches.
Among the learning-free methods, a series of papers [16–
18] define a set of geometric features on the object as
the state representation. The authors use this representation
to perform visual servoing with adaptive linear controller.
These methods only work for known objects with distinct
texture and cannot generalize to a diverse set of objects.
This formulation controls the displacements of individual
points which does not fully reflect the 3D shape of the
object. For precise control, one must use a large number of
feature points, making control highly susceptible to noise and
occlusion. Other learning-free works [19–21] represent the
object shape using 2D image contours; this severely limits
the space of controllable 3D deformations.

Among learning-based 3D shape control methods, Hu et
al. [5] represents the current state-of-the-art work in 3D
shape control. Specifically, they use extended FPFH [22]
to extract a feature vector from an input point cloud and
learn to predict deformation actions via a neural network

to control objects to desired shapes. However, we show that
this architecture over-simplifies the complex dynamics of 3D
deformable objects and thus struggles to learn to control to
a diverse set of target shapes [11].

There has also been work on shape control of deformable
objects that exhibit lower dimensional behavior, e.g., 1D
objects such as rope, and 2D objects, such as cloth [2, 8,
23–25]. These methods typically either directly learn a policy
using model-free RL that map RGB images of the object to
robot actions [2, 23] or learn predictive models of the object
under robot actions [8, 24–26]. These 1D and 2D works do
not scale to the 3D deformable object shape control problem,
either because they leverage lower dimensional object or
sensing (e.g. RGB images) representation or the inherent
physical differences between 1D, 2D, and 3D objects (e.g.
3D elastic tissue will return to its initial shape after released).

With respect to surgical robotics, several learning-based
approaches have been applied to other surgical tasks includ-
ing suturing [27, 28], cutting [29, 30], tissue tracking [31],
and simulation [32]. In this work we apply our method to
surgical retraction. Attanasio et al. [33] propose the use of
surgeon-derived heuristic motion primitives to move tissue
flaps identified by a vision system. In [34], a grasp location
and planar retraction trajectory is computed with a linearized
potential energy model leveraging online simulation. In [35],
a logic-based task planner is leveraged which guarantees
interpretability, however this work focuses on manipulating a
single thin tissue sheet and does not show shape or material
property generalization or validation on a physical robot.
Nagy et al. [36] propose the use of stereo vison accompanied
by multiple control methods, however the method assumes
a thin tissue layer and a clear view of two tissue layers.
Pore et al. [37] introduce a model-free reinforcement learning
method which learns safe motions for a robot’s end effector
during retraction, however it does not explicitly reason over
the deformation of the tissue. We compare against a similar
approach, using the same model-free reinforcement learning
algorithm, but adapted to our task to explicitly reason over
the tissue state.

III. PROBLEM FORMULATION

We address the problem of robotically manipulating a 3D
deformable object from an initial shape to a goal shape. In
this context, 3D refers to triparametric or volumetric objects
[1] which have no dimension significantly smaller than the
other two, unlike uniparametric (e.g., rope) and biparametric
objects (e.g., cloth).

We define the shape of the 3D volumetric object to be
manipulated as O ⊂ R3, noting that it will change over time
as the robot manipulates it and the object interacts with the
environment. As typical robots cannot directly sense O, we
consider a partial-view point cloud P ⊂ O as a subset of
the points on the surface of O, due to the prevalence of
sensors that produce point clouds. We define the point cloud
representing the initial shape of the object as Pi, the goal
shape for the object as Pg, and the shape of the object at a
given intermediate point in time Pc.

https://sites.google.com/view/deformernet/home
https://sites.google.com/view/deformernet/home


We note that the successful manipulation of a deformable
object depends on the point on the object the robot grasps,
i.e., the manipulation point (see Fig. 2). As such, we present
the first problem as the selection of a manipulation point,
which we define as pm = [x, y, z] ∈ O.

Fig. 2: Importance of manipulation point (MP) selection. Leftmost:
goal shape; Red box: successful MP; Blue box: failed MP.

Having grasped the object, the robot can change that
object’s shape by moving its end-effector and in turn moving
the manipulation point of the object. We define a manipula-
tion action A as a change in the manipulation point, formally
A ∈ R3,A = ∆x = [∆x,∆y,∆z]. The resulting problem
then becomes to define a policy π : P × P → R3, which
maps the point cloud representing the object shape and the
goal point cloud to an action vector describing the change
in manipulation point that drives the object toward the goal
shape, i.e., π(Pc,Pg) = A. The repeated application of a
successful policy π results in a manipulation point trajectory,
which when executed by the robot, results in transforming
the object from its initial shape to a goal shape.

IV. METHOD

In this section we explain the details of our proposed
approach. We first explain our shape servo [20] approach
to create a feedback policy for 3D deformable object shape
control. Following this we give details of the DeformerNet
network architecture at the heart of our shape servo policy.
Finally in this section we present our approach to selecting
a manipulation point, conditioned on the goal configuration,
used by the robot while performing shape control.

A. Shape Servo Control with DeformerNet

The shape servo formulation [5, 20] uses visual feedback,
here in the form of partial-view point clouds of the object
being manipulated, as input to a policy that computes a
robot action that attempts to instantaneously bring the current
shape, Pc closer to the target shape, Pg.

Following the notation from Sec. III we seek to construct
a shape servo policy of the form πs(Pc,Pg) = A. We
decompose our policy into two stages: (1) a feature extraction
stage and (2) a deformation controller (c.f. Fig. 3 top).

The feature extractor g(P) = ψ takes a point cloud as
input and outputs a shape feature vector we define as ψ.
We use two parallel feature extraction channels taking as
input Pc and Pg and generating feature vectors ψc and ψg

respectively. We then take the difference of these two to
define the feature displacements: ∆ψ = ψc − ψg.

Our deformation control function, F , takes this feature
displacement as input and outputs the desired instantaneous
change in end-effector position, hence: A = F (∆ψ).

The composite shape servo policy thus takes the form
πs(Pc,Pg) = F (g(Pc) − g(Pg)) = A. We then use a re-
solved rate controller to compute the desired joint velocities

following the desired end-effector displacement output by
our shape servo policy πs.

Training this model takes a straightforward supervised
approach. We simply record the robot manipulating an object
of interest, set the terminal object point cloud as Pg, select
any previous point cloud from the trajectory as Pc and
the associated end-effector displacement between the two
configurations as A. We give further details of this training
procedure in Sec. V.

Fig. 3: (Top) Architecture of DeformerNet; (Bottom) architecture
of the feature extraction module.

B. DeformerNet Architecture Details

As described previously, DeformerNet consists of two
stages: feature extraction and deformation control. Our fea-
ture extractor uses three successive PointConv [38] convo-
lutional layers that successively output clouds of dimension
(64, 512), (128, 256) and ultimately a 256-dimension vector
that acts as the shape feature. We downsample the input
current, Pc, and goal point clouds, Pg, to 1024 points
using the furthest point sampling method from [39] before
inputting them into the network. We provide full details of
the architecture in the bottom of Fig. 3.

The deformation control stage takes this 256-dimension
differential feature vector and passes it through a series
of fully-connected layers (128, 64, and 32 neural units,
respectively). The fully-connected output layer produces the
desired 3D displacement. We use ReLU activation function
and group normalization [40] for all convolutional and fully-
connected layers except for the linear output layer.

We use the standard mean squared error loss function for
training DeformerNet. We adopt the Adam optimizer and a
decaying learning rate which starts at 10−3 and decreases by
1/10 every 50 epochs.

C. Manipulation point prediction

As discussed above and shown in Fig. 2 the location at
which the robot grasps the object greatly influences whether
the robot can reach a target shape. As such we present here
an approach to selecting an appropriate manipulation point
prior to performing the shape control task. Recall we wish
to find a manipulation point on the surface of the object,
pm ∈ O. However, we must infer this location given the
initial Pi and target point clouds, Pg prior to acting. We
propose the use of a keypoint-based heuristic to select the
manipulation point. Our preliminary work [11] showed this
heuristic slightly outperformed a regression-based approach.



Our heuristic follows a simple idea, points that move more
should generally be closer to the manipulation point. Assume
we have a set of K keypoint matches M = {(uj , vj)|uj ∈
Pi, vj ∈ Pg}j=1:K between the initial and goal point cloud.
We define the associated keypoint displacements as δk =
{‖uj − vj‖}j=1:K . We then estimate the manipulation point
as the location defined by the displacement-weighted average
of the M keypoints with largest displacement.

We use an unsupervised keypoint detection algorithm
based on the Transporter Network of [41]. The original
Transporter network defines an unsupervised reconstruction
loss between source and target image pairs from a video
sequence. To adapt transporters to our 3D manipulation
point prediction problem, we leverage pairs of source-target
point clouds collected in simulation to train the model. We
convert the point cloud data to an organized, array-like point
cloud format to make them compatible with the original
Transporter network architecture.

V. EXPERIMENTS AND RESULTS

We evaluate our method in both simulation, via the Isaac
Gym environment [9], and on a real robot. For both simula-
tion and real robot experiments, training data for the learned
models are generated in Isaac Gym. In Isaac Gym, we use
a simulation of a patient-side manipulator of the daVinci
research kit (dVRK) [42] robot to manipulate objects (see
Fig. 4 (right)). For the real robot experiments, we use a
Baxter research robot with a laparoscopic tool attached to its
end effector and an Azure Kinect camera generating point
clouds of the deformable object (see Fig. 1). In both cases,
we affix one end of the deformable object to the environment
and task the robot with manipulating it via one grasp point.

Fig. 4: (Left) We train on random interpolations of these shapes.
(Right) Experimental setup showing a patient-side manipulator of
the dVRK in Issac gym.

A. Goal-Oriented Shape Servoing

We evaluate our method’s ability to deform the object to
the goal point cloud. In our previous workshop paper [11],
we reported the performance of our method when the model
was trained and tested on one object geometry and Young
modulus and demonstrated that our method outperforms a
current state-of-the-art method for learning-based 3D shape
servoing by Hu et al. [5].

1) Training Data Generation: We expand on this evalua-
tion in this work by first evaluating our method’s ability to
control the shape of a variety of 3D deformable object shape
primitives, including hemispheres, rectangular boxes, and
cylinders (see Fig. 4). For each primitive, we investigate three

different stiffness values (represented by Young’s modulus):
1 kPa, 5 kPa, and 10kPa, which represent stiffness properties
similar to those seen across different biological tissues [43,
44]. The three shape primitives, each with three stiffness
values result in a total of nine object types for evaluation.

For each of the nine object types, we create a training
dataset of objects with geometries sampled uniformly at
random from interpolations between the sizes of the shapes
in Fig. 4. In addition, each object for training is assigned a
Young modulus sampled from a Gaussian distribution with
means and standard deviations of (1kPa, 0.2kPa), (5kPa,
1kPa), and (10kPa, 1kPa) for the 1 kPa, 5 kPa, and 10 kPa test
scenarios, respectively. We train a separate model for each of
the nine objects, using the same DeformerNet architecture.

We generate each training dataset by randomly sampling
300 pairs of initial object configurations and manipulation
points. For each pair, the robot deforms the object to 10
random shapes for a total of 3000 random trajectories. We
record partial-view point clouds of the object and the robot’s
end-effector positions at multiple checkpoints during the
execution of this trajectory using the depth camera available
inside the Issac gym environment. We form supervised
data input-output pairs for training DeformerNet. The input,
(Pt,Pg) consists of a point cloud along the trajectory at any
arbitrary time t, as well as the point cloud at the end of this
trajectory. We compute the output, ∆xt, as the displacement
between the end-effector position at time t and the end of
trajectory. We sample 10,000 such pairs of data points for
training our model.

2) Generalization Performance: We are interested in eval-
uating the performance of our method on test scenarios
that are both inside and outside the training distributions in
simulation. To generate test scenarios outside the training
distribution, we sample objects with random dimensions
smaller than the minimum and larger than the maximum of
each of our primitive-shaped objects. We additionally sample
Young moduli with values 2-4 standard deviations from
the mean of the training distribution moduli. For each test
scenario we select 10 random objects from inside the training
distribution and 10 from outside the training distribution. We
then sample 10 random goal shapes for each of the 20 test
objects. We select the manipulation point for testing using
our keypoint-based heuristic with K = 200 keypoints.

We use Chamfer distance as our primary evaluation met-
ric to describe how close the final manipulated object’s
point cloud is to the goal point cloud. Chamfer distance
computes the average distance of each point in one point
cloud to the closest point in the other point cloud, dc =
1
|P1|

∑
x∈P1

miny∈P2
||x − y||2. Fig. 5 visualizes the result

of each object type with a boxplot recorded over the 20 test
objects with 10 goal shapes each. The box represents the
quartiles, the center line the median, and the whiskers repre-
sent min and max final Chamfer distance. For visualization
purpose, we also provide a sample snapshot of the robot
performing shape servoing to a goal shape in Fig. 7.

The experiment results show that our method is capable
of generalizing what it learns from training to adapt to
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Fig. 5: Distribution of Chamfer distance after shape servoing.
“Inside” reports for object inside the training distribution and
“outside” for random objects outside the training distribution.

geometries, material properties, and goal shapes it has never
seen before, both inside and outside the training distribution,
although predictably with some fall off in performance
outside the training distribution. We observe that the primary
common cause of failure comes from the heuristic manipu-
lation point predictor selecting a grasp location unable to
achieve the goal shape.

3) Baseline Comparisons: We also compare the perfor-
mance of our method against Rapidly-exploring Random
Tree (RRT) [45] and model-free Reinforcement Learning
(RL) for the 3D shape servo problem. Here we restrict
the task to be trained and tested on a single box object
as described in [11] and use only one manipulation point
throughout training and testing.

For the RRT implementation, we define the configuration
space as the joint angles of the dVRK manipulator. We define
a goal region as any object point cloud that has Chamfer
distance less than some tolerance from the goal point cloud.
We use the finite element analysis model [10] in the Isaac
Gym [9] simulator to derive the forward model for RRT.

We use proximal policy optimization (PPO) [46] (as
in [37]) with hindsight experience replay (HER) [47] for
model-free RL. We use our DeformerNet architecture for the
actor and critic network except for the critic output being set
to single scalar to encode the value function. Each episode
we condition the policy on a newly sampled goal shape.
We train the RL agent with 100,000 samples—10 times the
amount of data provided to DeformerNet.

We evaluate DeformerNet, RRT, and model-free RL with
10 random goal shapes. Fig. 6 shows the success rate of the
three methods at different levels of goal tolerance. We clearly
see that even with 10 times the training data compared to
our method, the model-free RL agent achieves a significantly
lower success rate compared to the other two methods. We
also note that while RRT succeeds comparably to our method
at looser goal tolerances, at tighter goal tolerances RRT
fails more often. Further, unlike our method, RRT does not
incorporate feedback during execution. As such RRT will not
be able to recover if the object shape deviates from the plan.
While one might think to perform replanning, we note that
RRT requires several orders of magnitude more computation
time required than our shape servoing approach. For instance,
at a tolerance of 0.4 (where both our method and RRT
achieve 100% success), over the 10 test goal shapes, the
lowest computation time required by RRT was 3.3 minutes,
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Fig. 6: Success rate comparison of DeformerNet to RRT and RL
baselines for varying levels of goal tolerance.

the highest was 121.6 minutes, mean was 38.7 minutes,
and standard deviation was 40.1 minutes. Our DeformerNet,
however, only requires a pass through the neural network
which takes minimal time. As a result, for this task, we note
a significant success rate improvement for our method over
model-free RL, a success rate improvement at strict goal
tolerance values over RRT, and a significant computation
time improvement over RRT in all cases.

4) Physical Robot Goal-Oriented Shape Servoing: We
next evaluate our method’s ability to perform shape servoing
on the real robot, while having been trained entirely in sim-
ulation. The experimental setup (shown in Fig. 1) leverages
a foam box affixed on one side to a table. We segment the
object’s point cloud out from the rest of the scene by fitting
a plane to the table with RANSAC [48] and selecting the
points above this planes. We filter out the black table clamp
and the laparoscopic tool using pixel intensity.

We generate three distinct goal shapes (Fig. 10 (left))
by manually moving the object to random shapes with the
laparoscopic tool and recording the resulting point cloud.
Figure 9 describes the success rate of the 15 trials over
different goal tolerance levels. Figure 7 visualizes a typical
manipulation sequence.

To showcase our method’s robustness, we additionally
evaluate on 3 goal point clouds obtained entirely from the
simulator (Fig. 10 (right)). Figure 9 visualizes the success
rate of the 15 trials over different goal tolerance levels. A
sample visualization is provided in Fig. 7. Overall we note
a slight drop in quantitative performance in the real world
compared to simulation, while qualitatively still succeeding.

B. Surgical Retraction

We next evaluate our method’s ability to perform a mock
surgical retraction task, in which a thin layer of tissue is
positioned on top of a kidney. We task the robot with
grasping the tissue layer and lifting it up to expose the
underlying area. Figure 8 (top, left) shows the simulation
environment composed of a kidney model with a deformable
tissue layer placed over it and fixed to the kidney on one side.
We train DeformerNet on a box object similar in dimensions
to the tissue layer, but without the kidney present.

Instead of requiring the operator (e.g. surgeon) to provide
an explicit shape for the robot to servo the tissue to, we
instead just require them to define a plane which the tissue



Fig. 7: Sample manipulation sequences of DeformerNet in different setups. The sparse red clouds visualize the target shapes of the object.
First row: with simulated dVRK in Isaac Gym (0.18 m final Chamfer dist.). Second row: with physical robot and real goal point clouds
(0.30m final Chamfer dist.). Third row: with physical robot and simulated goal point clouds (0.39m final Chamfer dist.).

Fig. 8: Top row: simulated retraction experiment setup (left) and a sample successful retraction sequence with target plane visualized in
blue. Bottom row: visualization of target planes for physical robot retraction (left) and a successful sequence with target plane in red.
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Fig. 9: Success rate of DeformerNet with physical robot when given
real goal point clouds and simulated goal point clouds.

Fig. 10: Left: goal point clouds from real sensor recordings. Right:
goal point clouds generated in simulation.

should be folded to one side of. An example plane can be
seen in Fig. 8. We use a simple algorithm to infer a goal
point cloud for the object based on this target plane. We use
RANSAC [48] to find a dominant plane in the object cloud
and then find the minimum rotation to align this plane with
the target plane. We then apply this estimated transformation
to any points not lying on the correct side of the plane and
set this as the target cloud along with the points currently
satisfying the goal. If after reaching the goal point cloud any

part of the object still resides on the wrong side of the plane,
we shift the target plane further into the goal region along
the plane’s normal vector and repeat the entire process.

To evaluate we sample 100 random planes with differing
orientations in simulation and task the method with moving
the tissue layer beyond the plane. Our approach reveals the
kidney underneath with a success rate of 95%.

We also evaluate retraction on the physical robot. We
affix a thin layer of foam to the table and task the robot
with moving the object via the laparoscopic tool beyond a
target plane. We evaluate on 3 different planes (see Fig. 8),
and for each plane conduct 5 trials. We observe a 100%
success rate across the 15 trials. We provide visualizations
of representative retraction experiments in Fig. 8.

VI. CONCLUSIONS

In this paper we presented a novel-approach to closed-loop
3D deformable object shape control. Crucially we demon-
strate through rigorous simulated and physical-robot experi-
ments that shape servoing with DeformerNet can manipulate
objects with novel material properties or shape while only
requiring a partial-view 3D point cloud as input. We further
demonstrate how our shape servoing approach can be adapted
to the task of surgical retraction, where a much simpler goal
representation in the form of a separating plane needs only be
provided. Our future work aims to extend our manipulation
approach to more surgical tasks, to manipulation of plastic
materials [49], and manipulating deformable 3D objects
common to homes and warehouses. Finally, we wish to move
beyond our greedy, visual servoing approach to provide more
explicit planning for longer-horizon tasks.
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