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Abstract
In the paper, a reinforcement learning technique is applied to produce a central pattern generation-based rhythmic motion
control of a robotic salamander while moving toward a fixed target. Since its action spaces are continuous and there are
various uncertainties in an environment that the robot moves, it is difficult for the robot to apply a conventional reinforcement
learning algorithm. In order to overcome this issue, a deep deterministic policy gradient among the deep reinforcement
learning algorithms is adopted. The robotic salamander and the environments where it moves are realized using the Gazebo
dynamic simulator under the robot operating system environment. The algorithm is applied to the robotic simulation for the
continuous motions in two different environments, i.e., from a firm ground to a mud. Through the simulation results, it is
verified that the robotic salamander can smoothly move toward a desired target by adapting to the environmental change from
the firm ground to the mud. The gradual improvement in the stability of learning algorithm is also confirmed through the
simulations.

Keywords Reinforcement learning · Adaptation to environmental change · Central pattern generator (CPG)

1 Introduction

With the advancement of technologies, robotic tasks have
gradually becomemuchmore complex and difficult. In order
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to implement these difficult tasks in real environment, bio-
inspired robots have been developed which are similar to
human being or other animals. Different attempts to develop
human or animal-like robots have resulted in a variety of
applications in the different fields. Bipedal robots that walk
like human and single-leggedhopping robots can easilymove
in the environment with obstacle and uneven terrain [1].
Fish-like swimming robots are helpful in exploring ocean,
river and different water reservoirs [2]. Snake robots and
other crawling robots can move on land, go through confined
spaces and swim in water [3,4]. Likewise, flying robots such
as birds and some insects have been developed in [5,6].

Along with the construction of bio-inspired robots, there
have also been researches on the development of algorithms
for periodic locomotion of vertebrates in [7–10]. Among
them, a salamander-like robot has been one of the intensive
research topics for the locomotion of vertebrates in [11–13].
In particular, Ijspeert et al. proposed a numerical model of
central pattern generator (CPG) for salamander with a spinal
cord model composed of a network of coupled neural oscil-
lators to drive a salamander robot in [14]. The salamander
robot was developed in order to use it as a tool to experiment
with biological hypotheses about evolution in animal loco-
motion, since the salamander is considered to resemble the
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Fig. 1 Robotic salamander simulator made in the ROS and Gazebo
environment

first terrestrial vertebrates [15,16]. The effort to experiment
with actual salamander-like robot can also be seen in [17].

In this paper, our major interest is to use the CPG model
of robotic salamander designed for walking on firm ground
surface [14] in a new environment that the robot has never
experienced, such as mud. In order to adapt the CPG model
parameters for robotic salamander to the new environment
while it continues to walk toward the target, deep reinforce-
ment learning is used. In particular, the drive signal used
to determine both intrinsic frequency and amplitude of the
CPG model is considered as the most important parameter
for interaction of the robot with inexperienced ground envi-
ronment.

The reinforcement learning is one of the learning schemes
in the category of machine learning [18,19]. It makes the
learner, called as an agent, learn from the interaction with
environments in order to achieve anygoal. Its general purpose
is to design the controller, called as policy, for nonlin-
ear systems. The reinforcement learning is becoming more
important thanks to its scalability according to various learn-
ing objects and tasks. In the past, the reinforcement learning
was applied only to the discrete and low-dimensional action
spaces. According to the deep deterministic policy gradient
(DDPG) algorithm developed in [20], it is recently extended
to the continuous and high-dimensional action spaces, a cate-
gory which many robotic researchers want to resolve. There
have been a few surprising results, e.g., the references in
[21–24] dealt with the control of high-dimensional systems
using deep neural network as functional approximation of the
reinforcement learning, namely deep reinforcement learning
algorithm.

One of the critical issues that make control of robotic
salamander more difficult is the uncertainties in real environ-
ment and its modeling. Due to the continuous environmental
changes, it is hard tomake an exact environmentmodel itself.
In order to resolve this issue, the deep reinforcement learning

Fig. 2 The left side is the description of the CPG model suggested in
[14], and the right side is the robotic salamander of Gazebo simulation
used as an agent for reinforcement learning in the paper

method is applied in this paper to generate parameters for
mathematical model with uncertainties by a trial-and-error
method. It is expected that the robot is able to learn how
to overcome the uncertainties using a deep reinforcement
learning method. Also the DDPG is applied to the robotic
salamander in order to implement agent’s adaptation for the
gaits in new environment. For this purpose, the supervised
learning algorithm is utilized to make the motion smooth
and easy. It is intended not to make the robot (agent) learn
from scratch by learning the CPG parameters of the already
known environment in advance. The robotic salamander and
the environments are implemented using the dynamic sim-
ulation tool called as Gazebo inter-lockable [25] with robot
operating system (ROS), as shown in Fig. 1.

The remainders of the paper are organized in the fol-
lowing order; Sect. 2 introduces the related fundamentals
regarding deep reinforcement learning and rhythmic motion
generation. In Sect. 3, network structures, reward function
and exploration strategy are described to explain the learn-
ing processes for rhythmicmotion of robot toward a target. In
Sect. 4, simulation results are given to reveal the advantages
of deep reinforcement learning for adaptation to the chang-
ing environment. Finally, in Sect. 5, conclusions are drawn
for the paper.

2 Backgrounds

In this section, we provide background materials required to
implement deep reinforcement learning process using deep
deterministic policy gradient. By applying to this method on
the CPG model, parameters for the adaptation of rhythmic
motionof the salamander robot canbegenerated for changing
environment.
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Fig. 3 Structure of the supervised pre-training network,where the black
right arrow indicates the weight parameters in forward propagation
phase and the red left arrow represents the back-propagation. After
training, the weight parameters are cloned to the actor network

Fig. 4 Structure of actor network to determine the CPG parameters,
where the inputs are one-hot vectors to denote environments, position
and velocity of agent. The weights of actor network are cloned from
those of the supervised pre-training network to produce the CPGparam-
eters

2.1 Reinforcement learning

In reinforcement learning, the behavior that an agent per-
forms in interaction with an environment E is referred to as
a policy, π : S → A. As the environment is stochastic, it is
modeled as a Markov decision process with a state space S,
action space A and reward function rr(t). A Markov decision
process is a decision-making process where an agent inter-
acting with an environment E changes its state st through the
action at at each time step t . The agent receives the reward
rr(t) according to the changed state st+1 and its action at . The
return, denoted by Rt , is defined to represent the sum of dis-
counted future rewards with a discounting factor γ ∈ [0, 1]
as suggested in [18]:

Rt = rr(t+1)+γ rr(t+2)+γ 2rr(t+3)+· · · =
∞∑

k=0

γ krr(t+k+1).

(1)

The discount factor is introduced to prevent the expected
return from going infinity. The value of action a that the
agent takes with the policy π can be defined as the expected
discounted return (cumulative reward) which begins with

state s. It is termed as the action-value function, denoted
by Qπ (s, a), and it is given as [18]:

Qπ (st , at ) = Eπ [Rt |st = s, at = a],

= Eπ

[ ∞∑

k=0

γ krr(t+k+1)|st = s, at = a

]
. (2)

In many approaches, the Bellman equation describing the
optimal action-value function is used. It can be described as
a function μ : S → A if the target policy is deterministic:

Qμ(st , at ) = Eμ

[
rr(t) + γ Qμ(st+1, μ(st+1))

]
. (3)

The goal of reinforcement learning is to find the optimal
policy which maximizes a cumulative reward. One of the
methods for reinforcement learning in order to find the opti-
mal policy is Q-learning[19] which makes use of the greedy
policy μ(s) = argmaxaQ(s, a). Mnih et al. in [22,23] used
the Q-learning algorithm with a deep neural network as
function approximators. Moreover, they proposed a deep Q-
network (DQN) by introducing two major changes such as a
replay buffer and a target network.

2.2 Deep deterministic policy gradient (DDPG)

It is hard to apply Q-learning to continuous action spaces
because the optimization is too slow to use in high-
dimensional action spaces. The DDPG algorithm resolves
these limitations by applying the actor-critic method to the
deterministic policy gradient (DPG) algorithm [26]. The
deterministic policy is formally considered such that μϑ :
S → A with parameters ϑ . The objective function for updat-
ing the actor policy network is defined as follows:

J (μϑ) = Eμϑ [Qμ(s, a)|a=μϑ(s)]. (4)

As a result, the weights of the actor network ϑ are updated
by the following rule:

ϑt+1 = ϑt + αEμϑ [∇ϑ Q
μ(s, a)|a=μϑ(s)],

= ϑt + αEμϑ [∇aQ
μ(s, a)|a=μϑ(s)∇ϑμ(s|ϑ)], (5)

where α is the learning rate. The gradient of the objective
function was obtained by applying the chain rule. The gradi-
ent of actor policy ∇ϑμ(s|ϑ) moves according to the criteria
given by the term ∇aQμ(s, a)|a=μϑ(s). This direction of the
actor policy gradient is provided by the critic network. The
critic network serves to evaluate the current policy through
the action-value function. It is referred to asDDPG algorithm
in [20] that combines the innovations of the DQN which
recently performs successfully and the actor-critic method
in [27] with deep neural approximators. The details on the
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Fig. 5 Critic network yields one action value Q with linear activation
function. For this, the inputs are taken as both the state s and the action
a = μϑ(s), in which the state is composed of the one-hot vectors
corresponding to environments, position and velocity, and the action is
26 CPG parameters corresponding to the output of actor network

network structure and the learning process for salamander
robot are explained in Sect. 3.

2.3 Central pattern generator model

CPG is a network of neural oscillators which generate rhyth-
mic muscular activities that can be used by animals for
periodic movements such as walking, breathing and cardiac
activities [28]. A spinal cord model of CPG was presented in
[14] which could be applied to the salamander robot in order
to represent the evolutionary changes in animals from aquatic
to terrestrial locomotion. Rhythmic outputs generated by the
CPG are used for generating gaits in the salamander robot.
The numerical CPG model for i th neural oscillator was pre-
sented in order to explain how the oscillators interact with
adjacent ones in [14], and it is given by:

θ̇i = 2πvi +
∑

j

r jwi j sin(θ j − θi − φi j ),

r̈i = ρi

(ρi

4
(Ri − ri ) − ṙi

)
,

xi = ri (1 + cos θi ),

(6)

where θi and ri are receptive phase and amplitude of i th
oscillator, respectively, and three variables θi , ri and ṙi denote
states of i th neural oscillator. Parameters vi and Ri are the
desired natural frequency and amplitude, respectively; vi =
f (cv,1, d, cv,0) and Ri = f (cR,1, d, cR,0) can be modulated
by the drive signal d. The parameterwi j denotes the coupling
strength between oscillators i and j , while φi j is a phase
difference between them. The parameter ρi is a positive time
constant, and xi is the nonnegative output of i th oscillator.

Figure 2 shows the network of CPG model proposed in
[14] to be applied to the salamander robot. The CPG net-
work is formed by the coupled oscillators for spinal cord,
and a pair of the coupled oscillators of CPG represent exci-
tatory and inhibitory neurons. The CPG in body consists of
16 oscillators divided into eight sets of the coupled oscilla-

Fig. 6 Actor-critic policy gradient diagram for robotic salamander,
where rr denotes the reward, the output of actor network is a policy
a = μ(s|ϑ) and the output of critic network is an action-value function
Q(s, a|ω). It is noted that actions a (here the CPG parameters) that are
the outputs of actor network are selected to be the current policyμ(s|ϑ)

tors, and the CPG for limb is composed of four oscillators,
one for each limb. The oscillators are only coupled with the
neighboring oscillators, e.g., the body oscillator 1 is coupled
with the body oscillators 2 and 9 and the limb oscillator 17 as
shown in Fig. 2. The difference between the outputs of exci-
tatory and inhibitory oscillators determines the desired angle
Θk for the robot joints in [14], and it is given as follows:

Θk = εk(xleft − xright) for body motors, (7)

where εk implies a gain that increases linearly from head to
tail,with ε1 = 0.5 for the head spine actuator and ε6 = 1.0 for
the tail. On the other hand, the desired angles of the limbΘkL
motors directly depend on the phase of the corresponding
oscillator given as:

ΘkL = gθi for limb motors, (8)

where kL = i − 16 and g implies a gain that adjusts swing
and stance time, which is taken as 1 for simplicity.

3 Methods

The DDPG algorithm that is very useful while dealing with
continuous action space is combinedwith actor-criticmethod
based on experience replay and target network method. The
learning process of robotmodel is introduced by usingDDPG
in [20]; firstly, the actor-critic neural network is explained
focusing on how the agent (robot) learns to achieve a spe-
cific goal, and then, the details of whole learning process are
presented in the following sections.

3.1 Supervised pre-training

Reinforcement learning algorithm in the paper is a learning
method for the agents to learn by itself such that it can arrive at
specific goal. The goal of our agent, i.e., robotic salamander,
is to generate rhythmic motions in the body to reach a target
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Fig. 7 Reward signal is defined as how close the agent moves to the
target direction,where δ denotes the angle between themoving direction
of agent and the direction from origin to target position

position despite of environmental change (from firm ground
surface to the mud) including a new environment which the
robotic salamander has never experienced. It means that the
robotic salamander does not know the CPG parameters for
walking in the new environment. Supervised learning algo-
rithm [29] is used for giving an aid to the reinforcement
learning algorithm. In order to apply the supervised learn-
ing algorithm, the dataset composed of the input and output
pairs (Xi ,Yi ) is required. The information about each envi-
ronment is represented as one-hot vector. For example, the
firm ground surface is represented as vector [1, 0, 0]T, while
[0, 1, 0]T and [0, 0, 1]T represent new environments. In par-
ticular, [0, 1, 0]T corresponds to themud environment used in
simulation. The position information of the agent is sampled
in Cartesian x − y coordinates. In the ranges of x ∈ [− 1, 1]
and y ∈ [− 0.5, 6], whose unit is meter, 2000 data are ran-
domly chosen. The planar velocities of agent denoted by vx
and vy are also used as inputs to the network. The target posi-
tion is set to a point 4meters away from the initial position on
the y-axis. The parameters of CPG model provided in [14]
are used as labels of the supervised learning. After training
the supervised learning neural network, the weight parame-
ters of the network are cloned to the actor policy network of
reinforcement learning algorithm. Thus, the structure of pre-
training network becomes equal to that of the actor network.
The configuration of pre-training network is shown in Fig. 3.

3.2 Actor-critic network

Just like the pre-training network, the one-hot vectors corre-
sponding to environment, position and velocity of the robotic
salamander are used as network inputs. Also, the network
yields 26 CPG parameters to be used in the CPG model. The
structure of actor network is shown inFig. 4. It is assumed that
there is a classifier which converts the information of envi-
ronments into one-hot vector. The CPG parameters as the
outputs of network correspond to the action since it makes

Fig. 8 Specifications of robotic salamandermodel used inGazebo envi-
ronment

Fig. 9 Supervised pre-training loss is monotonically decreased for 100
training epochs

the action at the end. These normalized CPG parameters are
for the network training, while the range of the parameters is
shifted when making actions. The experiences of model are
stored in replay buffer for the experience replay. The weights
of actor network are initialized as those of the supervised pre-
training network.

The critic network determines the direction that the actor
policy is updated. The critic network has the same structure
of actor network except the input and output layers as shown
in Fig. 5. The inputs of critic network are taken as both the
state s composed of the one-hot vectors corresponding to
environments, position and velocity of agent, and the action
a = μϑ(s) of the CPG model parameters corresponding
to the output of actor network. The critic network has one
output neuron with linear activation function for the action
value Q. The critic network is updated from the gradients
obtained from the temporal difference (TD) error signal [18].
The TD error signal is calculated from the outputs of critic
network when the current and next states taken out from
the replay buffer are used as the inputs. However, directly
updating the actor and critic networks may cause them to be
unstable as well as the learning algorithms to be diverged.
It can be resolved by using the separate target network in
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Table 1 Trained 26 CPG model parameters on firm ground and in mud, respectively

On the firm ground surface In the mud

[ε1, ε2, ε2, ε4, ε5, ε6] for body [0.500, 0.600, 0.700, 0.799, 0.899, 1.00] [0.524, 0.627, 0.732, 0.837, 0.942, 1.04]

ρi 19.995 20.96

d 3.01 2.49

[cv,1, cv,0] for body [0.199, 0.301] [0.21, 0.314]

[cv,1, cv,0] for limb [0.199, 0.0] [0.19, 0.0]

[cR,1, cR,0] for body [0.065, 0.196] [0.068, 0.205]

[cR,1, cR,0] for limb [0.1305, 0.1306] [0.128, 0.128]

[wi j , φi j ] downwards in body CPG [10.00, −0.7833] [10.47, −0.675]

[wi j , φi j ] upwards in body CPG [9.998, 0.784] [10.3, 0.7]

[wi j , φi j ] contralateral in body CPG [10.001, 3.137] [10.3, 3.137]

[wi j , φi j ] from limb to body CPG [30.006, 3.135] [31.33, 3.10]

[wi j , φi j ] within the limb CPG [10.001, 3.136] [10.461, 2.76]

order to generate the TD target yi . The TD target and the loss
function for the critic network have the following form:

yi = rr(i) + γ Q′(si+1, μ
′(si+1|ϑ ′)|ω′), (9)

L = 1

N

∑

i

(yi − Q(si , ai |ω))2, (10)

respectively, where N is the minibatch size. From the struc-
ture of critic network, we can get the direction of the actor
policy by calculating the gradient of the output Q of critic net-
work with respect to the action, namely∇aQμ(s, a)|a=μϑ(s).
In the DDPG algorithm, the update of target network is sim-
ilar to that of deep Q-network, but it is modified to a small
amount for actor-critic method [20]. The target network is
updated not directly by copying the weights, but by using
soft update like ω′ ← τω + (1 − τ)ω′. This improves the
stability of learning algorithm by changing the target value
slowly. After updating the critic network by minimizing the
loss function, the actor network is updated according to the
direction suggested by the critic network. This actor-critic
method is used with the experience replay and the separate
target network.

The Adam descent[24] is used with the learning rate of
10−4 and 10−3 for the actor and the critic, respectively. For
the critic network, a discount factor of γ = 0.99 is applied
and τ = 0.001 is used for the soft target updates. The
activation functions of hidden layers are the rectifier linear
unit(ReLU) functions [30]. On the other hand, the activation
function of each output node of the actor is selectively used
either the sigmoid function or the hyperbolic tangent func-
tion. For instance, the hyperbolic tangent functions are used
to determine CPG parameters related to the angle scaling
between [− 1, 1], and the sigmoid functions are used for the
remainders of the parameters. The networks are composed
of two hidden layers with 500 and 300 neurons, respectively.

The networks are trained with minibatch size of 64, and a
replay buffer size is 106.

3.3 Reward function

Figure 6 illustrates whole learning processes for the locomo-
tion of robotic salamander in the inexperienced environment.
To begin with, the CPG parameters which are the out-
puts of actor network are chosen as the current policy. The
reward rr(t) and the next state st+1 are observed after exe-
cuting actions, and these one-step dynamics of the agent
(st , at , rr(t), st+1) are stored in replay buffer. The actor net-
work uses this replay buffer in order to select the action
following the policy, and the critic network uses it for cal-
culating TD error and policy gradient. The samples stored
in replay buffer are taken out by minibatch size. In partic-
ular, the reward signal rr(t) is most important part of the
reinforcement learning algorithm. It determines the perfor-
mance to arrive at the goal of agent and the convergence rate
of learning algorithm.

The goal of agent is to reach the target position in given
map including inexperienced ground condition. Let us con-
sider the motion of agent shown in Fig. 7. At every time
step, the positions of agent used as inputs of networks are
calculated from two girdle positions. The girdle is a sort of
virtual link between body segments having limbs as shown
in Fig. 7. It is expected that the girdle (or moving) direction is
aligned with the target direction. In order to make the agent
follow the target direction, the reward signal rr(t) is defined
as follows:

rr(t) = V cos δ − V | sin δ|, (11)

where V is the speed of robotic salamander and δ is an
angle between the moving direction and target direction. The
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Fig. 10 Sum of total rewards per each episode while training, where
it is seen that the agent finds a reasonable policy within 100 episodes.
Although the initial rewards were noisy and low due to the exploration
effect, the constant rewards mostly maintained after conducting 100
episodes

reward function given above implies how close the agent
moves to the target direction. The first term V cos δ means
that the closer both moving and target directions each other,
the bigger reward it gets. The second term V | sin δ| reduces
the reward as the moving direction is deviated from the tar-
get. This reward signal results in the agent moving toward
the target position and finding the suitable CPG parameters
when the agent encounters the new environment.

3.4 Action noise

There always exists the exploration vs exploitation dilemma
in the reinforcement learning problem. Exploitation means
that the agent makes the best decision if current information
is known, and exploration helps in gathering much informa-
tion. Proper exploration should be provided for the agent in
order to improve the performance of reinforcement learning
algorithm. Here, Ornstein–Uhlenbeck process in [20] is used
as an action noise to conduct the exploration. It is a stochastic
process which has mean-reverting property, and it is given
by the differential equation:

dxt = β(μ − xt )dt + σdWt , (12)

where β denotes the rate at which the variables revert toward
the mean, μ is the mean, σ is the degree of volatility of
the process and dWt ∼ N (0, dt) follows standard Wiener
process. In this paper, small exploration regarding the drive
signal is chosen, and thus, the action noise of drive signal is
set such that μ = 0.3, β = 0.5, and σ = 0.1.

4 Simulation

In order to implement an agent, dynamic simulator named
Gazebo [25] was used. Figure 8 illustrates 135-cm-long

Fig. 11 Average ofmaximalQ values per episode,where it is confirmed
that the actor policy is updated in the right direction because Q value
increases according to the episode progress. Also its gradual increase
implies the improvement in the learning algorithm stability [23]

robotic salamandermodel used as the agent. It is composed of
simple polytopes like boxes, spheres and cylinders provided
in the Gazebo. The body spine was made by connecting the
box shapes in a line, and six hinge jointswere locatedbetween
body links. The continuous rotating joints unlike real sala-
manders connect the body and the limb. The data regarding
each link mass are given in Fig. 8 as well.

The robotic salamander implemented in Gazebo was con-
trolled by using well-known proportional-derivative (PD)
controller [31] as suggested in [14], where the errors between
the desired joint configurations determined by neural oscil-
lators based on the CPG model and the actual joint config-
urations are applied to the PD controllers. The ROS enables
connecting betweenGazebo simulation and CPGmodel. The
robotic joint configuration messages are published to ROS
topic, and then, each joint of robotic salamander in Gazebo
simulation subscribes the messages on ROS topic in order to
drive the joint PD controller. Since the Gazebo is also able
to publish the position and velocity of robotic salamander,
these information could be used as the states of agent for
actor-critic networks. The task of an agent in this simula-
tion is to pass through the firm ground surface, subsequently
to enter the mud and then to reach the final target position
located inside the mud. The mud environment was also pro-
vided by the Gazebo simulation.

4.1 Results of supervised pre-training

The purpose of the supervised pre-training is to provide the
trained weight parameters with the actor network of deep
deterministic policy gradient algorithm. The pre-training net-
work yields the CPG model parameters. Since the structure
of the supervised pre-training network is same as that of the
actor network, the input layer has seven neurons including
three neurons for the information regarding environments
and four neurons for the sampled position and velocity of the
agent, and there are 26 neurons in the output layer for the
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Fig. 12 Sequential snapshots of robotic salamander motion without reinforcement learning, from on the firm ground to the mud using Gazebo
simulator

Fig. 13 Sequential snapshots of robotic salamandermotionwith reinforcement learning, from on the firm ground to themud usingGazebo simulator

CPG parameters. The loss defined as the mean squared error
function is minimized while training. The pre-training loss
in 100 training epochs is shown in Fig. 9. The loss function
gets closer to zero as the epoch step increases. By applying
the supervised learning, the agent can move forward on the
firm ground surface with its suitable CPG parameters while
the reinforcement learning is conducted. The only thing left
for the agent is to learn about the new environment never
experienced by it while moving.

4.2 Learning result

One of the research aims of this paper is to analyze how
the CPG parameters are varied when the agent interacts with
new environment. The average CPG parameters produced by
the trained actor network in the mud as well as on the firm
ground surface are listed in Table 1. These parameters were
used by the agent to perform the task successfully. The CPG
parameters on the firm ground surface were similar to those
provided in [14]. For the inexperiencedmud environment, all
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the parameters suggested in Table 1 were changed to some
extent; however, we are to focus on the drive signal d. The
trained actor network yielded the average drive signal as 2.49
in the mud as given in Table 1. It is seen that the agent has
chosen a policy ofmoving slowly by lowering the drive signal
due to the increases in friction and resistive force caused by
the environmental change from the firm ground to the mud.
As amatter of fact, it was quite different from our expectation
that the robotic salamander would walk quickly with higher
drive signal because it receives negative rewards over time
it spends. Also the phase differences within limb CPG in
the mud φi j were significantly lower than those on the firm
ground surface in Table 1. Both the drive signal and the phase
differences within limb CPG were the important parameters
in adapting to the mud environment.

The robotic salamander learns the policy updated in the
direction that the critic network suggests. As mentioned
before, the output of critic network is the action-value func-
tion Q which represents the expected sum of future rewards.
Also, the critic network is updated by the reward per time
step. In order to show the progress of agent, the results of
learning can be seen by checking both the total reward that
the agent receives in each episode and themaximum Q value.
It is noted that the episode is terminatedwhen the robotmoves
for 1 meter or the total reward arrives at 40. Figure 10 shows
the total reward for each episode. It can be seen that the agent
finds a reasonable policy within 100 episodes. Although the
initial total rewards were very noisy and low due to the explo-
ration effect, the total rewards were mostly maintained at
near 20 after conducting 100 episodes. As more substantial
metric to assess the learning capability, Fig. 11 shows the
average of maximal Q values in each episode. Since the Q
value increases according to the episode progress, it is con-
firmed that the actor policy is updated in the right direction;
furthermore, its gradual increase implies that the stability of
learning algorithm has been improved [23].

Figure 12 illustrates the sequential snapshots for robotic
salamander when the reinforcement learning is not applied.
It can be seen that, by using same CPG parameters given in
[14], the robot moves smoothly toward the target on the firm
ground surface by using sinusoidal waveform-like motion of
body and periodic motions of limbs. When the robot enters
into the mud, its forward motion is seized, although the body
and limbs keep on moving with same rhythmic behavior.
The sequential snapshots regarding the motions of robotic
salamander using the reinforcement learning are shown in
Fig. 13. The robotic salamander starts its rhythmic motion
on the firm ground surface, and then, it enters in the mud.
It can be seen that the robot moves smoothly in both the
environments. Another observation is that the robot utilizes
its body as well as the limbs in both the environments. This
is quite different from the experiments conducted in [14] in
that only the bodywas usedwhile swimming in [14], but both

Fig. 14 Orientations of six body motors and four limb motors when
the CPG parameters obtained by applying the DDPG are used, where
we can observe that a rhythmic movements of the body motors become
slow accordingly as it enters into the mud from the firm ground and b
the slopes of the cumulative orientations of all the limbs become small
and, in other words, the speeds of all the limbs become slow accordingly
as it enters into the mud from the firm ground

body and limbs are all used while moving in the mud. Thus,
it can be concluded that the reinforcement learning was able
to help in adapting to the inexperienced new environment in
such a way that both body and limbs remain in action.

Figure 14 shows the orientations of all the body and limb
motors when the robotic salamander enters into the mud
from the ground with the CPG parameters obtained by using
DDPG. Figure 14a shows that the rhythmic motions of body
motors become slow entering into the mud from the ground
as we can see in the frequency changes in waveforms. On
the other hand, since the limb motors use continuous rota-
tional motions instead of to-and-fro motions during the gait,
the cumulative orientations of limbs are suggested in Fig.
14b. Looking at the slopes of the cumulative orientations of
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the limbs, it can be seen that the speeds of limbs become
slow accordingly as it enters into the mud from the ground,
because the slopes for the accumulated orientations are low
as shown in Fig. 14b. The detailed explanations are also given
for clarity in Fig. 14 in the paper.

5 Conclusions

In this paper, the CPG motion of salamander was imple-
mented on a robot such that it could adapt to new envi-
ronment. The robot, which is also called agent, learns
information about specific environment through the super-
vised pre-training. The firm ground surface was taken as the
known environment for locomotion, while the mud was later
provided as the inexperienced new environment. In Gazebo
simulation, the robotic salamander has moved adapting and
interactingwith the environment by changing theCPGmodel
parameters. The robot learned by trial and error with a deep
reinforcement learning algorithm and overcame the environ-
mental uncertainties while moving from one environment to
another.

It was shown that the robot smoothly reached the target
position using the CPG model parameters learned by the
reinforcement learning method. Although the robot has con-
tinuous and complex action spaces, it could learn a policy
well in the direction that the critic network suggests, and it
was able to carry out the task as well. From the results, it
was also concluded that the DDPG was a suitable learning
algorithm to control the rhythmic locomotion and its scala-
bility to the robot in changing environment was very large.
Furthermore, it could be seen that the drive signal to mod-
ulate whole motions was decreased when the robot entered
into the mud environment from the firm ground.
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