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Abstract
We propose a learning-based method to solve the problem of rearranging objects in clutter to obtain a collision-free path
for retrieving a target object by a robotic manipulator. The method provides the solutions for what obstacles to remove and
where to place them in what orders to rearrange the obstacles. The proposed method uses a deep Q-network to learn the
optimal policies for robot’s rearranging actions. To apply the network, it is assumed that the configurations of objects and
environment are known and the environment is considered as a grid space. Two types of structures for a deep Q-network are
proposed according to action characteristics for this problem. From extensive simulation experiments, we showed that our
algorithm could reduce the number of rearranged obstacles and the total execution time significantly (up to 35%) compared
to a baseline method. The experiments were performed by a real robot with a vision system and showed the feasibility of the
proposed method on real world.

Keywords Object rearrangement · Manipulation planning · Deep Q-network

1 Introduction

A robot has been requested to provide useful services in
human environments,whichmaynot be suitably structured to
facilitate the perception and functional capabilities of robot.
A robot often needs to manipulate objects in such human
environments, where many objects block a target to manipu-
late. The clutter of objects may make it difficult for the robot
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to perform perception, task and motion planning, control and
execution.

In cluttered environments where multiple obstacles sur-
round a target object, rearranging obstacles is necessary to
secure a collision-free path for the grasping of a robotic
manipulator. Planning for grasping the target should solve
such two problems aswhat to rearrange andwhere to place it
inwhat order. In some configurations, what to rearrangemay
mainly be considered when there is an empty space enough
for placing the obstacles to be relocated. In other configu-
rations, the robot may have to manipulate the objects only
within given bounded workspace such that where to place
the objects becomes important, too. This kind of problem is
known to be NP-hard even in a simple case where only one
obstacle is movable [5]. We are going to deal with the two
problems simultaneously by employing a deep learning skill.

In this paper, we aim to solve the two problems, (i)
selecting what to remove and (ii) determining where to
place, simultaneously. We introduce the methods to rear-
range objects and grasp a target in clutter, which employ
a Deep Q-Network (DQN) [13]. Due to the intractability of
the problem, conventional topological or geometrical plan-
ning approaches would take prohibitively long time to solve
a moderate-sized problem. Unlike them, our approach based
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Fig. 1 A dense clutter of 10 objects (the light green cuboid in the back
is the target) in the 36cm × 72cm space marked by the red lines on the
table. A subset of obstacles needs to be rearranged to retrieve the target.
This is one of the instances that our method can provide a solution for

on the deep reinforcement learning technique will provide an
answer to the problem quickly even in a dense clutter shown
in Fig. 1, where the objects should reside in the small space
marked by the red lines1.

The following are the contributions of this work:

– Wepropose an algorithmdeterminingwhat to remove and
where to place in what order in cluttered configurations.

– We provide extensive experiments in simulated config-
urations and with a real robot integrated with a vision
system.

2 Related work

Several planning methods have been introduced to solve
the rearrangement problem of obstacles. In [20], obstacles
around a target object were removed until the shortest path
froma robot to the target had no obstacle on it. It was assumed
that the configuration had an enough space for the robot to
place the removed obstacles so that the problem of where to
place obstacles was not considered. Dogar et al. [6] defined
a Negative Goal Region (NGR), which denoted the region
the end-effector of a robot should go through to grasp a tar-
get. Accordingly, all the obstacles inside the NGR should
be removed to avoid collisions. However, the locations to
place the obstacles were not dealt with and the configura-
tion of objects were less cluttered. Other works [7,9,14,15]
also focused on determining what to remove in what order
only, while not considering where to place removed obsta-

1 We restrict the robot to manipulate the objects only inside the space
although there are empty spots around the space.

cles. Recently, a method considering where to place was
proposed [4] but it is missing what to remove.

Several learning methods have been introduced to solve
the grasping problem in a cluttered environment.

Laskey et al. [10] proposed the deep learning networks
to grasp a target object surrounded by other objects. In the
networks, the policies for the accessible direction of a planar
robot arm to the target were trained with a hierarchy of three
types of supervisory data: (1) no obstacles reaching, (2) non-
expert crowd-sourced humans, and (3) a human expert. In
aspect of the use of reinforcement learning, their methods are
similar to ours at some points but they dealt with a grasping
problemonly. Instead ourmethod considered “what tomove”
aswell as “where to place”,whichmay request a hugenumber
of human demonstrations.

Bejjani et al. [3] introduced a receding horizon planner
(RHP) for pushing (nonprehensile) manipulation in clutter.
Deep neural network for the planner could be learned from
the task instances generated by the kino-dynamic planner
to solve the physics-based manipulation. The planner could
make it possible for a planar manipulator to locate a target
object at a given spot by pushing it and other objects, simulta-
neously. Their problemwas all to solve a planarmanipulation
and push a target object, not to grasp and place it, such that
their planner may be inapplicable to our problem (what to
pick and where to place it).

Bejjani et al. [2] extended the reinforcement learning
guided receding horizon planner (RHP) to such variant fea-
tures of objects as types, shapes, and number of objects
in clutter. In addition to non-prehensile (e. g. pushing or
pulling), their planner was able to perform prehensile (e.g.
grasping) manipulation actions such that the robot could
grasp and push (or pull) an object to a given location.
Meanwhile, other objects on the path might be pushed by
unexpected contacts with a robot griper. Even considering
grasp actions, their planner dealt with moving a target object
to a given location, not considering what to pick and where
to place like ours.

Instead of using physics-based simulation data, Hasan et
al. [8] used human participants demonstrations in a virtual
environment of reaching a target object on a table cluttered
with obstacles. Using the human demonstration data, they
proposed the support vectormachine (SVM)based classifiers
to abstract necessary geometric information for reaching like
gap, empty region, object direction etc. Their problem dealt
with determining the possible directions to reach a target and
move an obstacle by finding proper gaps and regions. Con-
ceptually their approach looks similar to our method in the
sense of using the geometric information (i.e. gaps or regions)
but it seems to be modified to find what object to rearrange
and move it to what location. Especially, it may need addi-
tional human demonstrations to search rearranging objects
and locations rather than directions for moving a robot arm.
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The studies described above focused on searching an
accessible path to a target object using deep learning or
machine learningwith human or simulation data. Theirmeth-
ods could make a robot to reach the target object by pushing
or grasping-and-pushing obstacles around the target object,
once the target object to grasp is given and the place to
relocate it is also given for certain problems. They did not
consider how far or much the obstacles are pushed, that
means, where the obstacles were rearranged. On the other
hand, our problem tried to obtain the rearranging objects and
their new places without collisions with other objects.

3 Background: deep Q-network

Our goal is to train a rearrangement problem-solving model
(so-called agent) using the Deep Q-Network (DQN) method
proposed by Mnih et al. [13]. It is known that the DQN
method uses a deep neural network to estimate a Q-function
accurately even if the size of a problem is large. Before apply-
ing the DQN method, we follow aMarkov Decision Process
(MDP) to define a problem. An MDP is a decision-making
process of an agent, where the actions chosen by the agent
change the environment. An MDP is represented as a tuple
〈S, A, R, T , γ 〉, where S denotes a finite set of states, A
denotes a finite set of actions, R is a reward function, T
is a state-transition function, and γ is a discount factor.

Watkins et al. [21] developedQ-learning to enable agents
(given through MDP) to act optimally against environments.
They define the Q-function at time t as an expected result
when an agent takes an action a in a given state s as follows,

Q(s, a) = E [Rt | St = s, At = a]. (1)

In Q-learning, a policy π(s) specifies an action chosen at
a state s by an agent. The optimal policy π∗(s) for the
agent maximizes a cumulative expected reward function (Q-
function) for a given finite state s and every possible finite
action a. The optimal policy is then obtained by maximizing
the cumulative reward as

π∗(s) = argmax
a

Q(s, a). (2)

DQN proposed by Mnih et al. [13] uses two techniques:
experience replay and target network. The technique of expe-
rience replay stores sample transitions, i.e. experiences of an
agent ((s, a, r , s′) through a number of episodes. s′ denotes
the state updated by applying the action a into the state s.
After each episode, random batches from the stored experi-
ence are used to update the network. In the learning iterations,
i.e. while updating the network, DQNminimizes a loss func-
tion L(θ) to update the network parameters θ , which is

defined as the difference between the predictedQ-values and
the target Q-values as

L(θ) = E

[(
r + γmax

a′ Q(s′, a′; θ−) − Q(s, a; θ)

)2
]

,(3)

where θ− and θ are the parameters of neural networks. The
target values of r + γmax

a′ Q(s′, a′; θ−) are used from some

previous iterations.After updating all the network parameters
through the learning, the optimal policy is given as

π∗(s) = argmax
a

Q(s, a; θ). (4)

4 Problem description: state and action

We consider the problem of rearranging obstacles in a clut-
tered environment as seen in Fig. 1 to retrieve a target object.
In this environment, we aim to secure a collision-free path to
the target by rearranging obstacles under the minimum num-
ber of manipulation actions. As we have observed that the
number of rearrangements (i.e., the number of actions per-
formed for rearranging obstacles) has a significant impact
on the overall execution time, the objective is to minimize
the number of rearrangements so that the execution time of
manipulation will be expected to be minimized.

In the early stage of development, we assume that the
configurations of objects and environment are known. We
consider an environment with Z obstacles and one target
object as seen in Fig. 2. In the figure, the environment (actu-
ally a table) is discretized into G grids. Although the table is
evenly divided into the G grids, the grid cells are not neces-
sarily symmetric and identical. In addition, the entire table
may not be discretized into a grid space so that the part of
table can be considered if the workspace of a robot is less
than the table. We define a grid space with two simple rules:
First, the size of a grid should be bigger than that of the largest
object in the workspace. Second, one grid should have only
one object on it.

The state s represents an environmentwithG grids includ-
ing objects (obstacles and a target) in it so that s is given in a
G×1 vector. A rearrangement action a consists of two parts:
ap is the action of picking the pth obstacle and al the action
of placing that obstacle at the lth grid as

a = [ ap, al ]. (5)

We assume a deterministic environment meaning that all
transition probabilities are 1 in the entire work.
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Fig. 2 Discretization of an environment

5 DORE: DQN-based obstacle rearrangement
algorithm

In this section, we proposed two methods for training the
DQN-based models: single DQN and sequentially separated
DQN. For each method, we described the architectures of
the neural network and the elements of the MDP. Then, we
propose the DQN-based Obstacle Rearrangement algorithm
(DORE) to solve an obstacle rearrangement problem.

5.1 Single DQN

The input of model is an environment represented in a sin-
gle state, which includes the grids, obstacles and a target
in that state. The output is the actions that the agent will
perform. The environment consists of Z obstacles, O =
{o1, o2, ..., oZ }, one target object T = {ot }, G ∈ R

+ grids
for a table, and the position information of obstacles and tar-
get as shown in Fig. 2b. When the j th element in O has a
value i , i.e. o j = i , it denotes that the j th obstacle is located
at the i th grid. Similarly, ot = k in T means that the target
stands at the kth grid. The state s is represented by G × 1
vector as

s = {g1, g2, ..., gG}. (6)

The elements (for i=1 to G) of s are given as

gi =
{0 if the i th grid is empty,
1 if the i th grid is occupied by an obstacle,
2 if the i th grid is occupied by the target.

(7)

Fig. 3 An illustration of the generalized single DQN network model.
We use the vanilla DQN method for training the network. The input is
the state s describing the environment (the locations of objects in a grid
space). The output is the action a = [ ap, al ] that a robot performs.
From the output layer Q1 (upper in red), we select the action for picking
ap through Eq. (8). From output layer Q2 (lower in pink), we select the
action for placing al through Eq. (9). According to ap and al , the agent
makes a transition from s to the next state s′

For example, Fig. 2a shows a table of 5 by 5 grids, three
obstacles (in red), and one target (in blue). The three obstacles
are located at the 4th, 7th, 14th grid and the target is at the
18th. For this example, the state s is then given as s = {0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 }.

Based on the states and actions in Eqs. (5)–(7), we con-
struct a network shown in Fig. 3 using TensorFlow interface
[1]. The network consists of three types of layers: an input
layer, hidden layers, and two output layers. The network
receives a state s vector representing the occupancy of the
grids (7). The hidden layers enable the calculation of the
optimal action-value function through node updates.Wehave
two output layers to obtain a = [ap, al ]. Output layer 1, Q1,
is a Z × 1 vector and contains the Q-values for determining
the picking action ap. Output layer 2, Q2, is a G × 1 vector
and contains theQ-values for determining the placing action
al . Thus, the two output layers produce the action for deter-
mining what to pick and where to place at the same time. The
action a = [ ap, al ] is obtained from the network through

ap = argmax
a

Q1(s, a; θ) and (8)

al = argmax
a

Q2(s, a; θ). (9)

Suppose we have a state shown in Fig. 2a. The environ-
ment has O = {4, 7, 14}with T = {18}. If the network gives
ap = 2 and al = 16, the second obstacle in O (i.e. the obsta-
cle at grid 7) is chosen to pick and grid 16 is chosen to place
that obstacle as shown in Fig. 2b.
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In each learning iteration, the reward r is determined
according to the next state s′ that is obtained by applying
an action a to the current state s. The next state s′ could yield
three types of rewards r : (i) positive reward rp ∈ R

+, (ii) neg-
ative reward rn ∈ R

−, and (iii) unfinished reward ru ∈ R
≥0.

Determination of these types depends on if the next state is
successful in generating a collision-free path to retrieve the
target. The positive and negative rewards are used as termi-
nation conditions for the iterations. The positive termination
condition occurs if the agent in the state s′ has a collision-
free path so that the reward r becomes rp and is stored in the
experience replay as e = (s, a, r , s′). The negative termina-
tion condition occurs if the agent fails to execute the selected
action a = [ al , ap ] so that r = rn . This failure is defined
as four cases: pick fail, place fail, pick and place fail, and go
back fail.

– Pick fail: the obstacle to be picked (through ap) is
obstructed by other obstacles.

– Place fail: the grid for placing an object (through al ) is
obstructed by other obstacles.

– Pick and Place fail: the agent fails to do both ap and al .
– Go back fail: s′ is the samewith one of the previous states
(duplicated visits). No action is performed.

Note that obstructions and feasibility of collision-free
paths are checked using the modified VFH+ as mentioned
in “Appendix A”. If s′ does not meet any of the termination
conditions, learning process will continue further (no termi-
nation of the episode). In this case, r = ru .

We consider if the model trains stably while increasing
the number of grids for variable environments. We increased
the number of grids to 6 by 6 (G = 36), 7 by 7 (G = 49),
and 8 by 8 (G = 64). In each environment, we compared two
cases: one case has one target and three to five obstacles and
another case has one target and three to 20% of the number
of grids.

As the number of grids increases over 6 by 6, the success
rate of learning up to five obstacles was 95% but it gradually
decreased in the cases of more than five obstacles. This may
be caused by learning twodifferent types of actions in a single
DQN. To compensate for the loss of success rate, we propose
another DQN structure to divide the network according to
action types so that learning can be done in consideration of
two different characteristics of actions, respectively. This is
followed in the next section.

5.2 Sequentially separated DQN

Split deepQ-learning proposed in [17] showed that actions
in different characteristics could reflect their features bet-
ter when they were learned from the separate networks than
from a single DQN. Similarly in our work, sequentially sepa-

rated DQN is structured to learn picking and placing actions
independently and sequentially through two networks. We
construct the networks shown in Fig. 4 using TensorFlow
interface [1].

The first network θp, which is for pick actions, learnswhat
to remove in clutter. A pick action ap denotes the action to
pick the obstacle on the apth grid. According to the pick
action ap, the agent makes a transition from the state sp for
picking (so called pick state) to the next state sp ′. In the next
pick state the obstacle on the apth grid is considered to be
removed.

In the network for pick actions, we expand the state s
defined for the single DQN into the pick state sp by adding
accessibility of obstacles. The pick state sp consists of the
state s and the masked pick state mp(s), which is given in
2 ∗ G × 1 vector as

sp = [ s, mp(s) ], (10)

where the state s is same as for the single DQN by Eqs. (6)
and (7). The masked pick state mp(s) represents whether
each grid in the state is accessible for a robot or there is no
obstacle on that grid. mp(s) is then given in a G × 1 vector
as

mp(s) = {p1, p2, ... , pG}. (11)

The elements (for i=1 to G) of mp(s) are given as

pi ={0 if gi �= 1 or AccessibleCheck(gi ) = 0
1 if gi = 1 and AccessibleCheck(gi ) = 1,

(12)

where gi is given in Eq. (7) and AccessibleCheck function
is given as

AccessibleCheck(gi ) ={0 : no collision-free path to the i th grid,
1 : collision-free path to the i th grid.

(13)

The value of i th element pi is 1 if there is an obstacle on
the i th grid and the robot has a collision-free path to that
obstacle. pi is 0 if there is no obstacle on the i th grid or if it
has no collision-free path to an object or a target. Note that
obstructions and collision-free paths are checked using the
modified VFH+ in “Appendix A”.

The pick action ap is selected from the output layer Qp

in a G × 1 vector as seen in Fig. 4. The output layer contains
the Q-values for all the possible actions. We select the pick
action ap that maximizes the Q-value among the possible
actions through

ap = argmax
a

{Qp(sp, a; θp) × mp(s)}. (14)
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Fig. 4 An illustration of the generalized sequentially separated DQN
network model. We use a vanilla DQN method for training each net-
works. In the pick network θp , the input is the pick state sp describing the
environment s and the accessibility of obstaclesmp(s). From the output
layer Qp , we select the pick action ap through Eq. (14). According to

ap , the agent makes a transition from sp to the next state sp ′. Sequen-
tially, the place network θl , the input is the place state sl describing the
environment s′ and the accessibility of grids ml(s′). From the output
layer Ql , we select the place action al through Eq. (18). According to
al , the agent makes a transition from sl to the next state sl ′

The next state sp ′ could yield three types of rewards r : (i)
positive reward rp ∈ R

+, (ii) negative reward rn ∈ R
−, and

(iii) unfinished reward ru ∈ R
≥0. Determination of these

types depends on if the next state is successful in generat-
ing a collision-free path to retrieve the target. The negative
reward is used as termination conditions for the iterations.
The positive condition occurs if the agent in the state sp ′ has
a collision-free path so that the reward r becomes rp and
is stored in the experience replay for the pick network θp
as ep = (sp, ap, r , sp ′). The negative termination condition
occurs if the agent fails to execute the selected action ap, so
that r = rn . If sp ′ does not meet the termination condition,
learning process will continue further (no termination of the
episode). In this case, r = ru .

Sequentially, the second network θl for placing actions
determines where to place it from the place state sl which
is the next state from the first network. Place action al is an
action that places the obstacle on the al th grid. The agent
makes a transition from sl to the next place state sl ′. We
redefined the state, action, and reward function for the pick
network θp and the place network θl .

In the network for place actions, we expanded s into the
place state sl to include additional information of accessibil-
ity as for pick actions. The place state sl consists of two parts,
the state s′ and the masked place state ml(s′), and is given in
a 2 ∗ G × 1 vector as

sl = [ s′, ml(s
′) ]. (15)

The masked place state ml(s′) is determined according to if
each grid in the state s′ is accessible and there is no object on
that grid, which means that the agent can place the obstacle
on that grid. The masked place state ml(s′) is defined in a

G × 1 vector as

ml(s
′) = {l1, l2, ... , lG}. (16)

The elements (for i=1 to G) of ml(s′) are given as

li ={0 if gi �= 0 or AccessibleCheck(gi ) = 0,
1 if gi = 0 and AccessibleCheck(gi ) = 1, ,

(17)

where gi is given in Eq. (7) and AccessibleCheck function
is Eq. (13). The value of i th element li is 1 if there is nothing
on the i th grid and the robot has a collision-free path to the
grid, and 0 if there is objects on the i th grid or if it has no
collision-free path to the grid.

The place action al is selected from the output layer Ql in
a G×1 vector as seen in Fig. 4. We select the place action al
that maximizes the Q-value among possible actions through

al = argmax
a

{Ql(sl , a; θl) × ml(s
′)}. (18)

The next state sl ′ could yield three types of rewards r :
(i) positive reward rp ∈ R

+, (ii) negative reward rn ∈ R
−,

and (iii) unfinished reward ru ∈ R
≥0. Determination of these

types depends on if the next state is successful in generating
a collision-free path to retrieve the target. The positive and
negative rewards are used as termination conditions for the
iterations. The positive termination condition occurs if the
agent in the state sl ′ has a collision-free path so that the
reward r becomes rp and is stored in the experience replay
for the place network θl as el = (sl , al , r , sl ′). The negative
termination condition occurs if the agent fails to execute the
selected action al , so that r = rn . If sl ′ does not meet the
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termination condition, learning process will continue further
(no termination of the episode). In this case, r = ru .

5.3 Algorithm implementation

Wepropose theDQN-basedObstacleRearrangement (DORE)
algorithm (described in Algorithm 1).We train amodel using
DQN [12,13] and check the success rates by intermediate
performance tests (IPTs) during training. Once the training
is done, we test the algorithm (line 3 in Algorithm 1). In case
of failure, the algorithm conducts a transfer learning method
(line 4–16), which will be described later in detail.

Algorithm 1 DORE
Input: ModelM , training episodes Er , test episodes Et , target success

rate ST , training limit T lim, IPT test size T try, IPT test criterion
T epo

Output: Success or Fail
1: M = TrainModel(M, Er , Et , ST , T lim, T try, T epo)
2: Randomly choose eu from Et
3: Test M with eu

\* start transfer learning*\
4: if eu fails with M then
5: nt = 0
6: e = MakeExperienceMemory(eu)
7: while nt < T lim do
8: nt + +
9: M = TrainDQN(M, eu , e)
10: Test M with eu
11: if eu succeeds with M then
12: return Success
13: end if
14: end while
15: return Fail
16: else
17: return Success
18: end if

The model training called in line 1 of Algorithm 1 is
described in Algorithm 2. For training, we create random
instances to have Z obstacles and one target object in G
grids. While generating the random instances, we discard
those instances that do not require any rearrangement. Each
of these instances is called an episode. We aggregate a num-
ber of episodes for training and test. The set of training
episodes Er includes 70% of the total instances. The test
set Et includes the rest 30%.

We implement experience replay ewith Er (line 1 inAlgo-
rithm 2). We train the model by two methods (single DQN
and sequentially separated DQN) using e and Er (line 4 in
Algorithm 2) until the model reaches the target success rate
ST (= 95% in this work) or the number of training episodes
reaches to a predetermined limit T lim. The IPT measures
the success rate Sr of the model while training is being per-
formed (line 7 in Algorithm 2). We run an IPT every time
T epo ∈ Z

+ number of episodes are terminated. The num-

Algorithm 2 TrainModel
Input: ModelM , training episodes Er , test episodes Et , target success

rate ST , training limit T lim, IPT test size T try, IPT test criterion
T epo, Number of IPT batches Nb

Output: A trained model M
1: e = MakeExperienceMemory(Er ) . . . . .// generate an experience

memory for DQN
2: nt = 0 .. . . . . . . . . . . . //nt is the number of episodes used for training
3: while nt < T lim do
4: M = TrainDQN(M, er , e) . . . . . . //er ∈ Er is one of the training

episodes
5: nt + +
6: if nt mod T epo == 0 then
7: S counter = 0
8: for i=1 to Nb do
9: Sr = IPT(M, Et , T try) . . . . // run an IPT after training every

T epo episodes
10: if Sr ≥ ST then
11: S counter + +
12: end if
13: end for
14: if Scounter == Nb then
15: return M
16: end if
17: end if
18: end while
19: return M

ber of instances used for each IPT is T try ∈ Z
+ (we set

T epo = T try = 1000 in this work).
After each IPT, we calculate the success rate,

Sr = T try − Ft

T try
× 100 (19)

where Ft is the total number of failure cases that a batch of
IPTs returns. For increasing reliability of training, we com-
plete training if Sr reaches ST in five consecutive IPT batches
(line 8–16 in Algorithm 2).

Although the model finishes training, it does not solve
any problem instance with 100% of success rate. In order
to deal with the cases of failing in tests, we implement a
transfer learning method [18] to learn extra episodes (line
4–16 in Algorithm 1). Transfer Learning (TL) is a technique
taking additional training for a trained model. We train the
model additionally using a new e generated by the problem
instance that the model failed (line 6 in Algorithm 1). The
algorithm finishes the additional training if the positive ter-
mination condition is met (i.e., the robot has a collision-free
path to the target) or the number of training episodes exceeds
T lim. If TL finishes successfully, it means that themodel can
solve the problem instance that it had failed before running
TL (line 11–13 in Algorithm 1).
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6 Experiments

In this section, the single and sequentially separated DQNs
were tested in various environments, where multiple objects
and different sizes of workspace were considered. First,
the number of rearrangements and the total execution time
between the baseline method and the single DQN are com-
pared. In addition, the planning time was compared between
a graph-based search and the single DQN. Second, some
sample results planned by the single DQN were validated
with a real robot manipulator integratedwith a vision system.
Lastly, the two networks of single and sequentially separated
DQNs are compared in the success rate. In the experiments,
we build both the networks fully connected hidden layers,
which use swish function as the activation function in both
cases. The hyperparameters used in training are given in
Table 5.

6.1 Experiments with single DQN in simulated
environments

The single DQN was conducted in several sizes of grid
environment and its results were compared with those of a
graph-based search method and the baseline method.

A graph-based search is one of the well known methods
to deal with the kind of our problem (i.e. it is to find the best
node out of a graph consisting of actions). To implement it,
we need to define a node and branching. The node denotes
a state (s) representing the configuration of a grid environ-
ment. For the rearrangement problem, we define two types
of branching (bp and bl in Fig. 5): selecting what obstacles
to pick for rearranging and where to place it. The method
builds a graph structure by branching from the initial node
(the initial configuration) until no more branching is neces-
sary to rearrange the obstacles. The method checks if there
is a possible collision-free path to grasp or release obstacles
in both branching processes through the modified VFH+ in
“Appendix A”. The method also checked whether the robot
end-effector can reach a target object by using the modified
VFH+, when a new node is created.

To compare with the graph-based search method, a 6 by
6 grid environment is given and the side length of grid is
12cm. For training the single DQN method, we generate
random episodes with three to nine obstacles (not including

Fig. 5 A graph-based search: nt and nt+1 are the nodes denoting the
current and next steps, respectively. The branching, bp , denotes the
picking action (i.e. selecting a rearranging obstacle), which yields the
intermediate node, n′

t . The next branching, bl , is thenmade to findwhere
to place and builds the next step

Fig. 6 The environment for a realistic simulation: We use a virtual
model of Kinova Jaco1 in the simulator, V-REP. This is an example of
the 3 by 6 grid environment with 6 obstacles in red and a target object
in green

Table 1 The results from simulations for the 6 by 6 grid space (20 repetitions)

Metric Method Number of obstacles
3 4 5 6 7 8 9

Planning time Graph-based search 1.3 (0.35) 2.0 (0.71) 3.0 (0.71) 3.7 (0.75) 4.3 (1.75) 6.5 (2.03) 8.3 (1.78)

(s) Proposed (single DQN) 0.8 (0.08) 1.1 (0.41) 1.2 (0.41) 1.3 (0.40) 1.5 (0.74) 1.9 (0.80) 2.2 (0.70)

The numbers in parentheses represent standard deviations
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Table 2 The results from simulated experiments for the 3 by 6 grid space (10 repetitions)

Metric Method Number of obstacles
3 4 5 6 7 8 9

Number of Baseline 2.2 (0.78) 2.6 (0.84) 3.3 (0.67) 3.7 (0.48) 4.9 (1.19) 5.9 (0.99) 6.7 (0.82)

Rearrangements Proposed (single DQN) 1.4 (0.51) 1.9 (0.73) 2.2 (0.63) 2.4 (0.51) 3.1 (0.99) 3.6 (0.96) 4.3 (0.94)

Total execution Baseline 169.9 (48.17) 193.9 (50.52) 235.9 (43.84) 259.9 (30.89) 331.9 (70.40) 391.9 (56.66) 439.9 (52.98)

Time (s) Proposed (single DQN) 120.7 (32.06) 150.7 (42.36) 168.7 (38.90) 180.7 (32.27) 222.7 (61.99) 252.7 (57.24) 294.7 (55.23)

The numbers in parentheses represent standard deviations

Table 3 The results from simulations for the 6 by 6 grid space (10 repetitions)

Metric Method Number of obstacles
3 4 5 6 7 8 9

Number of Baseline 2.2 (0.78) 2.6 (0.84) 3.2 (0.63) 3.5 (0.52) 4.3 (0.67) 5.2 (1.03) 5.8 (0.91)

Rearrangements Proposed (single DQN) 1.4 (0.51) 1.9 (0.73) 2.1 (0.56) 2.2 (0.42) 2.5 (0.84) 3.1 (0.73) 3.6 (0.69)

The numbers in parentheses represent standard deviations

the target, Z = 3 to 9) as seen in Table 1. Twenty random
instances for each case of Z were tested. The planning time of
the graph-based search and the single DQNmethod for those
instances are compared in Table 1. The graph-search took
longer time for planning than the single DQN method. The
planning time difference between the twomethods increases,
as more obstacles exist. The largest difference (i.e. the single
DQN method is 73% less than the graph-based search) was
obtained, when Z = 9. This observation is expected, since
the single DQNmethod takes much time for learning but less
time for execution such that it worked faster than the graph-
search. However, there is still a tread-off between both the
methods. For example, the single DQN method may need
to learn a new environment that is very different from the
learned environments.

The baseline method developed by Dogar et al. [6] was
implemented to compare the rearranging performance in
clutter. The method removes all obstacles in the straight path
from the end-effector to the target. The method did not find
the places to put the removed obstacles but placed them in any
empty space. For comparingwith the singleDQNmethod,we
added a rule that an empty grid, whichwas not obstructed and
furthest from the target, was chosen to place a picked obsta-
cle. For checking obstruction, we used the modified VFH+
in “Appendix A”.

Wedesign thegrid space considering the robot’sworkspace
and the end-effector size. The space has 3 by 6 square cells
whose side length is 12cm.Note that the environment reflects
the characteristics of the real Jaco1 robot and the same with
the one shown in Fig. 7b. For training, we generate random
episodes where the number of obstacles Z (not including
the target) ranges from three to nine. We used the single
DQNmethod for the training themodel.We tested 10 random
instances for each Z . We measured the number of rearrange-

ments and the total execution time for the baseline and the
proposed method. The total execution time includes the rear-
rangement planning time and the running time by a virtual
robot as seen in Fig. 6. The results in Table 2 show that the
single DQN method reduced both the number of rearrange-
ments and the total execution time significantly compared to
the baseline method. In average, the number of rearrange-
ments was reduced by 34% and the total execution time was
reduced by 30%.As the singleDQNwas trained up to Z = 7,
the algorithm failed with some instances of Z > 7 (e.g., it
failed seven times out of ten in average). If it fails, the DORE
algorithm runs the transfer learning (TL) so that a solution
can be provided. It is noticed that no TL is called for the
cases of Z ≤ 7 in our experiments. During TL, the algo-
rithm takes extra time for additional training. TL took 143 s
(standard deviation = 42.8) on average, until it solved the
previously failed instance. The computing system used is
composed of Intel Core i7-6700 CPU, GeForce GTX 1060
6GB/PCle/SSE2, and 16GB RAM.

Another grid environment with 6 by 6 grid was considered
as seen in Table 3. We trained the single DQN with the num-
ber of gridsG = 36, where the number of obstacles Z ranges
from three to nine.We tested 10 random instances by increas-
ing Z from three to nine. The number of rearrangements was
only compared, since the total execution time by a virtual
robot is tightly dependent on and proportional to the number
of rearrangements. The results in Table 3 show that the sin-
gle DQN method reduced the number of rearrangements by
36% compared to the baseline method. We figured out why
the baseline method planned more rearrangements and took
longer execution time. First, the baseline method rearranges
all the objects on the straight path from a robot end-effector
to a target object, which causes unnecessary rearrangements.
Second, the rearrangements planned by the baseline method
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sometimes blocked some part of the empty space so that the
rest of the empty space might not be reachable. As the single
DQN was trained up to Z = 7, similarly to the case of 3
by 6 grid environment the transfer learning (TL) often ran
for the instances with Z > 7. TL took 261 s on average
(standard deviation = 51.4) using a computing system with
Intel Xeon(R) Gold 6130 CPU, four GeForce GTX 2080
Ti/PCle/SSE2, and 128GB RAM.

6.2 Experiment with a real robot manipulator

We validated the single-DQN in the DORE algorithm by
using a real robot system integrated with a vision module.
Both the robot and the vision module were implemented on
the Robot Operating System (ROS). Kinova Jaco1, a 6-DOF
manipulator fixed at the base frame, was used in the experi-
ments. Figure 7b shows some snapshots from the experiment
with seven objects. The 3 by 6 grid environment used is same
as one of the simulated environments described in Sect. 6.1.

To extract the grasping information of objects, an RGB-D
sensor is installed at a fixed position. The sensor is able to
observe all objects in the robot workspace. The sensor first
obtains the 2D coordinates of object locations using point
clouds and then computes the grasping centers of objects.
The Faster R-CNN in [16] was employed to obtain object
labels and the bounding boxes as seen in the first snapshot of
Fig. 7b.

As mentioned before, the 3 by 6 grid environment was
build with seven objects including a target object. For this
environment, the single-DQN planned the rearrangements of
three obstacles and the collision-free path to the target object
was obtained. It took 402.3 s to complete the given task of
grasping the target object, which includes both of planning
and execution time. From the real robot experiments, it was
observed that the single-DQN could work in the real world
as done in the simulated environments.

6.3 Comparison of the two training networks

In addition to the single DQN, we proposed the sequentially
separated DQN structure to train the network stably for the
environments with the large number of grids like 6 by 6 (G =
36), 7 by 7 (G = 49), and 8 by 8 (G = 64). In each of these
environments, we compared two cases: One case has one
target and three to five obstacles and another case has one
target and three to 20% of the number of grids. We measured
the success rates for the single DQN and the sequentially
separated DQN methods. The results are shown in Table 4.

As the number of grids increases over 6 by 6, the success
rate of learning up to five obstacles was 95% but it gradually
decreased in the cases of more than five obstacles. We did
not use the sequentially separated DQN network structure

in simulation experiments and real robot experiments. If we
had used the method, there would have been better results.

7 Conclusion

In thiswork,we propose a learning-basedmethod to solve the
problem of rearranging objects in clutter, which can provide
a collision-free path for a robotic manipulator to grasp a tar-
get.We employs a deepQ-network to learn the optimal policy
of the robot performing actions for rearranging objects. The
proposedmethod then produces the solutions forwhat obsta-
cles to remove and where to place them in what orders. Two
networks, single DQN and sequentially separated DQN, are
constructed by considering the characteristics of actions.

The experimental results show that our algorithm reduces
the number of rearranged obstacles compared to a baseline
method. Accordingly, the execution time until grasping the
target object is reduced. The experiment with a real robot
integrated with a vision system shows that our method works
in the real world as well. In addition, comparison on the per-
formance of two networks shows that sequentially separated
DQN works better than single DQN, as more obstacles exist
in more complicated clutter. From this, it is observed that
structures of networks may carefully be designed accord-
ing to features of actions. One of the interesting future
directions is to apply the proposed method to the instances
that cannot be modeled by regularly-spaced identical grids,
where we would use a graph representation instead of a grid
space.

Furthermore,Webelieve that research including the uncer-
tainty of perception that can occur in clutter environments is
also possible. There is a problem in an environment with
multiple objects, where invisible space occurs due to being
obscured by objects. To this end, we also plan to apply the
method of expressing and learning invisible spaces in the
state to future research.

AModified VFH+

Traditionally, Vector Field Histogram (VFH+) [19] is used to
find a collision-free direction of amobile robot. VFH+ calcu-
lates a histogram representing the density of obstacle around
the robot. In [11], VFH+ is modified to find a direction where
the lowest number of obstacles need to be relocated. If there
is a direction with zero density in the histogram, it means
that the target can be transported toward that direction with-
out making any collision (i.e., no obstacle in that direction).
If only non-zero density values exist in the histogram, the
direction with the lowest density is chosen since the number
of obstacles to be removed is the smallest if the robot decides
to clear obstacles in that direction.
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Fig. 7 a Rearrangement planning result for the 3 by 6 grid environment
with 7 objects (reds: 6 obstacles, blue: 1 target). The resultant sequence
of rearrangement planning: the obstacle on grid 16 moves to grid 18.
The obstacle on grid 3 then moves to grid 12. The obstacle on grid 9
goes to grid 17 and the target on grid 15 can be finally retrieved. b

Snapshots of the real robot experiment. The 2D bounding boxes in the
first picture shows the object information found by the vision system.
The rest of pictures show the rearranging movements until the robot
retrieves the target object (the green cuboid in the back)

Table 4 The results from comparing the success rate with single DQN (S-DQN in the table) and sequentially separated DQN (SS-DQN in the
table)

Grid space 6 by 6 (G = 36) 7 by 7 (G = 49) 8 by 8 (G = 64)

No. of obstacles (obstacle density in %) 3–5 (8–14) 3–8 (8–22) 3–5 (6–10) 3–10 (6–20) 3–5 (4–8) 3–13 (4–20)

Success rate (%) S-DQN 95 78 95 64 95 53

SS-DQN 95 95 95 81 95 78

We use the modified VFH+ while training the model. Our
proposed method finds what to relocate and where to place
the obstacles. During the training, themodifiedVFH+ checks
if the obstacle chosen to be relocated is accessible to the end-
effector (i.e., graspable without collisions). If the obstacle is
accessible, the modified VFH+ checks if the obstacle can be
placed to the location foundbyourmethodwithout collisions.
Depending on whether the rearranging actions are successful
or not, our method determines how to reward the actions.

B Hyperparameters

Hyperparameters used in training the networks are shown in
Table 5. Algorithms 1 and 2 used six hyperparameters: num-
ber of training episode, number of test episode, target success
rate, training limit, intermediate performance test size, and
intermediate performance test criterion. Training the net-
works byDQNmethods [13], we used nine hyperparameters:
minibatch size, experience replay size, target network update
frequency, discount factor, learning rate, initial exploration,
final exploration, replay start size, and number of nodes in
hidden layer.
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Table 5 The values of hyperparameters used for training the networks in DORE

Single DQN Sequentially separated DQN

3 by 6 grid space 6 by 6 grid space n by n grid space (n = 6, 7, 8)

Number of training episode (|Er|) 119,000 595,000 70,000

Number of test episode (|Et|) 51,000 255,000 30,000

Target success rate (ST) 95% 95% 95%

Training limit (Tlim) |Er| × 15 |Er| × 15 |Er| × 15

Intermediate performance test size (Ttry) 1000 1000 1000

Intermediate performance test criterion (Tepo) 1000 1000 1000

Minibatch size 32 32 32

Experience replay size 1,000,000 1,000,000 1,000,000

Target network update frequency 10,000 10,000 10,000

Discount factor 0.99 0.99 0.99

Learning rate 0.0025 0.0025 0.0025

Initial exploration 1 1 1

Final exploration 0.1 0.1 0.1

Replay start size |Er| × 5 |Er| × 5 |Er| × 5

Number of nodes in hidden layer (w1, w2, ..., wn) 400, 300, 300 600, 500, 400, 300 400, 300, 300

Reward set (rp, ru , rn) 10, 0, −1 10, 0, −3 10, 0, −3
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