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Accounting for Hysteresis in the Forward Kinematics
of Nonlinearly-Routed Tendon-Driven Continuum

Robots via a Learned Deep Decoder Network
Brian Y. Cho , Daniel S. Esser , Graduate Student Member, IEEE, Jordan Thompson, Bao Thach ,

Robert J. Webster III , Senior Member, IEEE, and Alan Kuntz , Member, IEEE

Abstract—Tendon-driven continuum robots have been gaining
popularity in medical applications due to their ability to curve
around complex anatomical structures, potentially reducing the
invasiveness of surgery. However, accurate modeling is required to
plan and control the movements of these flexible robots. Physics-
based models have limitations due to unmodeled effects, leading
to mismatches between model prediction and actual robot shape.
Recently proposed learning-based methods have been shown to
overcome some of these limitations but do not account for hys-
teresis, a significant source of error for these robots. To overcome
these challenges, we propose a novel deep decoder neural network
that predicts the complete shape of tendon-driven robots using
point clouds as the shape representation, conditioned on prior
configurations to account for hysteresis. We evaluate our method on
a physical tendon-driven robot and show that our network model
accurately predicts the robot’s shape, significantly outperforming
a state-of-the-art physics-based model and a learning-based model
that does not account for hysteresis.

Index Terms—Deep learning methods, medical robots and
systems, surgical robotics: Steerable catheters/needles.

I. INTRODUCTION

CONTINUUM robots have garnered significant attention
for medical applications due to a high degree of dexterity

and their flexible nature—enabling them to perform precise
and intricate movements in complex and narrow anatomical
structures [1], [2]. The inherent flexibility of continuum robots
has the potential to minimize the invasiveness of surgery, miti-
gating one of the problems of open surgery–the overall trauma
to the patient. Tendon-driven continuum robots are a type of
continuum robot actuated by tendons routed along the length of
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Fig. 1. (Upper left) We leverage point clouds to represent the whole shape
of the robot. (Upper right) Hysteresis causes the robot’s shape to significantly
depend on its prior configuration history. History 1 and History 2 show the
sensed shape of the robot at the same tendon-displacement configuration, but
having come from different prior configurations. (Bottom) Our proposed deep
decoder neural network model aims to learn the tendon robot’s entire shape
while accounting for hysteresis. Taking as input the current and previous tendon
configurations it produces a point cloud (white) that well aligns with the ground
truth (red).

the backbone [3], [4]. When the tendons are pulled, they apply
forces and moments to the backbone, causing the robot to bend
and take curved shapes, based on its backbone compliance and
the tendon routing.

Accurate mechanical models are necessary to plan and control
the complex movements of these flexible robots. Physics-based
mechanical modeling approaches for tendon-driven robots,
e.g., [5], [6], are unable to take into account unmodeled effects
such as anisotropic or non-homogeneous material properties and
unpredictable friction, leading to a mismatch between model
predictions and the actual shape of a physical robot. Machine
learning-based models, e.g., [7], [8], have been shown to be
able to learn from data to predict robot shape well. However, to
date these methods only map a single current configuration to
the robot’s shape. Continuum robots, including tendon-driven
robots, suffer from hysteresis, in which the shape is dependent
not only on the current configuration but on prior configura-
tions [9], [10] (see Fig. 1). These concerns make it difficult
to predict a robot’s shape for either physics-based or learned
methods, which in turn can lead to inaccurate planning and
control of these robots.
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In this work, we propose a deep neural network-based method
that learns to predict the entire shape of a tendon-driven robot
given both its current configuration, i.e., tendon displacements,
as well as the prior configuration. Conditioning the shape model
on both the robot’s current configuration and its previous con-
figuration enables the model to account for hysteresis and sig-
nificantly improves the accuracy of the shape prediction.

As an additional benefit, our method outputs a geometrical
representation of the robot’s shape directly in the form of a
point cloud—a representation widely used in other domains for
object geometric shape representation [11], [12], [13]. This is
in contrast to existing methods, e.g., [8], which output parame-
terizations of shape such as the robot’s backbone. These param-
eterizations require additional, time-consuming computation to
describe the robot’s full shape in order to be useful for control
or planning via collision detection or task-space metric evalu-
ation. The concept is particularly well-motivated when consid-
ering point clouds, where fast nearest-neighbor data structures
and computational geometry methods enable computationally-
efficient processing of point clouds for collision-detection and
clearance calculations [14], [15]. Our method’s point-cloud
output is enabled by our deep-decoder-based neural network
architecture as well as a novel point-cloud-based loss function.
We have designed our approach to be independent of the par-
ticular tendon routing or robot prototype and envision that our
method has the potential to be utilized in the various surgical and
interventional applications for which robots of this type have
been proposed. This includes upper airway surgery, thoracic
surgery, laparoscopic surgery in the abdomen, gynecological
surgery, and urological surgery.

We evaluate the effectiveness of our proposed method in
improving the shape prediction accuracy on a physical tendon-
driven robot with both linear and non-linearly routed tendons.
We show significant improvement in shape prediction com-
pared to a state-of-the-art physics-based mechanical model. We
demonstrate the method’s ability to successfully account for
hysteresis by comparing it against a version that is not con-
ditioned on prior configurations. The results show that our deep
decoder network model accurately predicts the robot’s shape and
successfully accounts for hysteresis.

II. BACKGROUND AND RELATED WORK

Tendon-driven robots are a class of continuum robots that use
cables or tendons to control their motion. They have been widely
used in various applications, including surgical robotics [1],
[2], [4], [16]. Tendon-driven robots display high dexterity and
flexibility, enabling a large workspace and the ability to navigate
through confined spaces and curve around anatomical obstacles
in the human body. Additionally, they can be designed to be
lightweight and compact, which makes them suitable for appli-
cations where size and weight are a concern [17], [18]. One of the
major challenges in tendon-driven robots is accurately modeling
their complex mechanical behavior. This is largely due to non-
linear and difficult to model factors such as hysteresis, friction,
and anisotropic material properties, resulting in inaccuracies in
predicting the shape and motion of tendon-driven robots.

To address this challenge, research effort has been made to
handle many unmodeled effects in tendon-driven robots [9],
[10], [19], [20]. Of particular concern is a phenomenon displayed
by tendon-driven robots called hysteresis [9], [10], [21], [22],
[23]. This manifests as a dependence in the forward kinematics
computation not only on current configuration but on past config-
urations or paths. Hysteresis occurs in tendon-driven robots due
to multiple potential factors, e.g., friction between the tendons
and the robot, actuator slack, and tension irregularities.

Researchers have proposed various modeling techniques for
continuum robots, from physics-based models, both analyti-
cal and numerical [5], [19], [24], to machine learning-based
approaches [7], [8], [25], [26], [27], [28]. Rucker et al. [5]
present a physics-based model that leverages Cosserat rod theory
to model the mechanics of tendon-driven continuum robots.
Tendon friction is a known issue in such robots that can introduce
hysteretic behaviour in these devices, and various approaches
have been proposed to model such effects in catheter-like de-
vices with straight tendons [29], [30], however modeling these
effects in generally routed (i.e., not necessarily linearly-routed)
continuum robots is an open challenge. Data-driven methods
have been leveraged to compute the inverse kinematics [31], [32]
and forward kinematics [7], [33], [34], [35], [36] of continuum
robots. However these methods do not consider the full robot
shape, rather only computing information about the robot’s
tip—which may be insufficient for applications requiring, e.g.,
obstacle avoidance. Kuntz et al. [8] propose a forward kinematics
method for learning the entire backbone shape of concentric tube
robots, however the method requires additional computation to
recover the full robot geometry. Further, none of these learned
methods account for hysteresis. We build upon these methods
in this work.

III. PROBLEM FORMULATION

We consider a tendon-driven robot consisting of a flexible
backbone of length l with N tendons arbitrarily, e.g., potentially
non-linearly [5], routed along its length, with reference base
frame B. By pulling a tendon i at the robot base, the com-
pliant backbone bends, and the entire robot changes its shape
according to the tendon routing and the tendon displacement
defined by qi for tendon i. We then define the robot’s con-
figuration as a vector q = [qi : i = 1, . . . , N ] ∈ R

N . Further-
more, to enable the consideration of hysteresis, we define an
augmented hysteresis configuration vector η which pairs the
prior robot configuration along with the current configuration,
η = [qprior,qcurrent] ∈ R

2N .
We define the robot’s shape as p, noting that p can take

the form of any sufficiently descriptive shape representation.
We next define a function that maps the robot configuration,
conditioned on the prior configuration, to the robot’s shape as
the forward kinematics function FFK : η → p. The problem
then becomes to approximate FFK as closely as possible.

IV. METHOD

To solve this problem, our method leverages a learning-based
approach to map hysteresis configurations to the robot’s shape in
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Fig. 2. Network architecture of our novel deep decoder network. The model
takes the robot’s augmented configuration vector η as input and outputs a point
cloud of the robot’s shape p̂. The model consists of 4 hidden layers, each of
which is fully-connected, ReLU activated, and batch normalized followed by an
output layer of size 3M . We reshape the network output (1-dimensional vector)
into a 3×M matrix, where M is the number of points, as the point cloud
representation.

the form of a point cloud. Specifically, we propose a novel deep
decoder neural network model that maps an η = [qprior,qcurrent]
to a point cloud p̂ consisting of M 3D points such that p̂ ∈
R

3×M , representing the complete surface geometry of the robot.
The goal is to output p̂ such that it closely approximates the
true shape of the robot p after having started in qprior and then
transitioned to qcurrent, i.e., having executed the two configura-
tions in η in sequence. Note that our approach is designed to
be an accurate hysteresis-informed computational model that is
utilized by a motion planner prior to deployment and assists in
open-loop control during deployment.

Our deep decoder network model architecture is presented
in Fig. 2. The model takes as input η. This is then passed
through four fully-connected layers of increasing size, each with
rectified linear unit (ReLU) activation functions [37] and batch
normalization [38]. This is then connected to an output layer
defining a 1-dimensional vector of size 3M . We reshape the
network output into the point cloud as a 3×M matrix, a general
form of point clouds, where M is the number of points.

We present a novel loss function Ltendon that enables
our method to learn the complex and detailed 3D geome-
try of the tendon-driven robot. Ltendon blends two popular
correspondence-free point cloud distance metrics, Chamfer dis-
tance (CD) and Earth Mover’s Distance (EMD). Chamfer dis-
tance C measures the distance between two sets of points (e.g.,
pa and pb) by summing the distances between each point in one
set and its closest neighbor in the other set:

C(pa,pb) =
∑

x∈pa

min
y∈pb

||x− y||2 +
∑

y∈pb

min
x∈pa

||x− y||2.

By contrast, EMD, defined here as the function E, measures the
distance between two point distributions via:

E(pa,pb) = min
ξ:pa→pb

∑

x∈pa

||x− ξ(x)||2,

where ξ is a bijection pairing points in pa with points in
pb. Intuitively, EMD computes the minimum amount of work
required to transform one point set into the other, where the
work represents the amount of mass moved times the distance
it is moved. Our novel loss function is the linear combination,
with scaling factor λ (which we set experimentally as discussed
in Section V-C), of these two distance metrics between the
predicted and ground-truth point clouds:

Ltendon = C + λ · E.

Intuitively for our problem, CD encourages the coarse geometry
of our model’s predicted point clouds to be similar to that of the
ground truth while EMD ensures that the predicted point clouds
have a similar distribution to the ground truth. Adding EMD on
top of CD helps refine the 3D geometry as well as enforce the
points to be evenly distributed on the surface of the tendon robot.

V. DATA COLLECTION AND MODEL TRAINING

To successfully train our method, we must first collect a
diverse set of hysteresis configurations and pair each with a
dense and accurate point cloud representing the shape of the
robot. In this section we first describe how we capture dense
and accurate point clouds of the robot’s shape and the process
by which we segment the robot in the point cloud, separating it
from the background. We next describe the process by which we
collect a data set of diverse hysteresis configurations using the
point cloud capturing method. Finally we describe the training
process for our model that leverages the data set.

A. Registration and Segmentation

To collect point cloud data for a given robot shape, we leverage
two point cloud sensors pointed at the robot from different
angles (see Fig. 3). These sensors collect the point clouds pcam1

and pcam2.1 We seek to unify these two point clouds into a
single dense point cloud. To calibrate the coordinate systems
of the cameras to the robot base frame B, we leverage the
commonly-used correspondence-based registration algorithm
of [39]. We compute two homogeneous transformation matrices
TB

1 : pcam1 → B and T1
2 : pcam2 → pcam1. We then calculate

the transformation matrix TB
2 = TB

1T
1
2. Using the resulting

transformation matrices, we align the two point clouds pcam1

and pcam2 with the robot base frame B (see Fig. 3). After
calibrating the coordinate systems of the two cameras to the
robot base frame, we segment the tendon-driven robot, removing
the points associated with the background and leaving only the
points in pB

cam1 and pB
cam2 that correspond to the robot. With

the two camera frames registered and the robot segmented, we
can concatenate pB

cam1 and pB
cam2 to obtain a complete repre-

sentation of the robot’s shape from both camera views, i.e.,
p = [pB

cam1,p
B
cam2] (see Fig. 3). Note that while we use two

cameras, the process above could be used with just one, or with
more than two with minimal changes.

1In a slight overload of notation we borrow the use of p (and associated
subscripts) to now also represent a sensed point cloud that lies on the surface of
the physical robot.
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Fig. 3. Registration and Segmentation. (Left) We sense point clouds of the robot’s shape using two RGB-D cameras placed around the robot. (Middle) We apply
a registration algorithm to align the two camera frames with the robot base frame. We identify five points of correspondence in each of the three frames, specifically
the robot’s tip when it is at its home, zero-tension position, as well as four points at the corners of the 3D printed structure at the robot’s base. The registration
algorithm then provides a closed-form solution to generate the optimal rigid transform based on the correspondence set. The concatenated, aligned point clouds
are shown. (Right) We then segment the robot’s point cloud by removing point cloud points outside of the robot’s workspace. Specifically, we eliminate any points
in the sensed point clouds which are outside of the robot’s workspace, which we approximate for this purpose as a hemisphere of radius l (corresponding to the
robot’s backbone length) plus a safety margin of ε centered at the robot’s base. This ensures that only the points corresponding to the robot’s shape are retained in
the scene.

B. Hysteresis Configuration Data Set Generation

To train our model in a supervised fashion where the predicted
outputs are compared against the ground-truth point clouds, we
collect a data set Dhys. Dhys is a set of data points where
each data point is a tuple pairing a hysteresis configuration
η with its corresponding registered, segmented, and concate-
nated point cloud p collected on the robot. More formally,
Dhys = {(η1,p1), (η2,p2), . . . , (ηL,pL)} is a data set of L
data points.

Remembering that each η encodes two robot configurations
(a qprior and a qcurrent), we note that for the model to learn how
hysteresis influences the robot’s shape at a givenqcurrent, we need
Dhys to contain multiple hysteresis configurations where qcurrent

is consistent but qprior varies.
The process by which we generate this diverse data set is

specific to our robot. The robot on which we evaluate our method
(see the red-colored robot in Figs. 1 and 3) is actuated via four
tendons, three straight tendons and a helical tendon (see full
description in Section VI-A).

We first generate a nominal set of configurations for our
training set. This is done by first generating a discretization over
the combinations of possible tendon displacements on the robot,
restricted in a specific way. We restrict this set to combinations
that ensure that all three straight tendons are never tensioned si-
multaneously (which would not be done in practice) and that the
helical tendon is not tensioned simultaneously with any straight
tendon. To further cover the robot’s configuration space, we then
add to this set a full grid search-based discretization in tension
space, relaxing the restriction to only exclude configurations that
simultaneously tension all three straight tendons and excluding
configurations already generated by the previous step.

We utilize this nominal set as the set of possible qcurrent

configurations. We then generate a large set of η augmented
configurations in the following way (see Algorithm 1). First,
consider a home configuration as a special case qhome, where
all tendons have zero tension. We create the first set of hys-
teresis configurations as η = [qhome,qcurrent] for each qcurrent

Algorithm 1: Hysteresis Configuration Generation.

configuration in our nominal set (lines 4− 5). In other words,
for each configuration in the nominal set, we first command the
robot to the home configuration,qhome, and then to the non-home
configuration qcurrent. We then record the point cloud at qcurrent.

We next augment this set with more hysteresis configurations
where the robot does not return to qhome between configurations
but rather first visits a different, randomly selected configura-
tion from the nominal configuration set (lines 6–10). In other
words, multiple times for each nominal configuration, we first
command the robot to go to a randomly selected configuration
and then to the nominal configuration, recording the point cloud
at the nominal configuration. This ensures that we have diverse
hysteresis configurations, i.e., that for each configuration in the
nominal set (i.e., each qcurrent), we have multiple corresponding
hysteresis configurations in which qprior is different but qcurrent

is the same.

C. Model Training

To train and validate our model, we split the full data set
into 50 test cases and separate 70% of the remaining cases for
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training and 30% for validation. After each training epoch, the
model is evaluated on the validation set. If the validation loss
stops improving over 50 consecutive training epochs, we stop the
training process to prevent overfitting. We initialize the model
weights using Xavier initialization [40] and use a batch size of
32 during training. We use the Adam optimizer with a learning
rate of 0.01, decayed by a factor of 0.1 every 100 epochs. We
use our loss function Ltendon described prior. By training and
evaluating multiple versions of our model, we have determined
that λ = 1 works well.

VI. EXPERIMENTS AND RESULTS

Here we present experimental details, quantify how signifi-
cant hysteresis is for our system, analyze the benefit of our novel
loss function, and finally compare the performance of our model
to a state-of-the-art physics-based model as well as to a version
of our model that does not account for hysteresis. Also note that,
with the exception of model training, throughout this section
when we compare two point clouds—e.g., a model-predicted
point cloud and a ground truth point cloud—we employ CD
as a metric of difference. CD has been effectively used in
various applications to measure the similarity between point
clouds where point-to-point correspondence is not available or
not desirable, providing robustness and flexibility in geometric
evaluation [41], [42], [43]. We utilize CD rather than the custom
loss function we train the model with to decouple the evaluation
of loss function performance and model performance.

A. Experimental Details

For our experiments we leverage a physical tendon-driven
robot, composed of a 3D printed, flexible thermoplastic
polyurethane (TPU) material body with a thin nitinol tube
embedded in the 3D printed structure with a length of 0.2 m,
consisting of 9 circular disks that connect 3 straight-routed
tendons at 120 degrees apart and 1 helically-routed tendon,
with linear actuators pulling on the tendons to control the
robot’s shape at the robot’s base (see Figs. 1 and 3). Note that
our method’s current validation is limited to our robot with
a specific, commonly used tendon routing pattern. Each disk
has a diameter of 0.02 m and is positioned with a distance of
0.02 m between each adjacent pair. We use two RealSense depth
cameras (D405) to collect data. Our nominal configuration set
generated as described above contains 2773 configurations. For
comparison purposes, we define a special Dhys subset, Dhys

home,
as the first data collected where each qprior configuration is the
home configuration. The full data set Dhys consists of Dhys

home
augmented with two sets where qprior was instead randomized
(as detailed above). In this way, Dhys

home contains 2773 data points
andDhys contains 2773× 3 = 8319 data points. With this, each
nominal configuration appears in our data set three times, once
where the prior configuration was the home configuration and
two additional times where the prior configuration was randomly
selected. Our method outputs a point cloud of size 512, and we
downsample the point clouds of all training and evaluation data
to have size 512 as well.

Fig. 4. Qualitative loss function comparison. The sensed, ground truth robot
shape point cloud is shown in red, and the model-predicted point clouds are
shown in blue. The model trained with MSE loss completely fails to achieve
the robot’s shape. When trained with EMD loss, the model tends to generate
points that are uniformly distributed along the robot’s structure but the points
often cluster around the robot’s backbone rather than accurately representing the
full shape, including the disks attached along its length. The model trained with
the CD loss function produces point clouds that show the robot’s geometry but
the resulting points are unevenly distributed along the shape. Our proposed loss
function, EMD + CD (Ltendon), shows the best performance both qualitatively
and quantitatively, demonstrating a precise estimation of the robot’s shape with
evenly distributed points.

B. Quantification of Hysteresis

We first quantify the severity of hysteresis for our robot. To do
so, we compare the nominal configuration set of 2773 configura-
tions gathered in two ways. In the first we command the robot to
return to the home configuration in between each of the nominal
configurations (i.e., with the home configuration as qprior). In
the second, we instead command the robot to visit a random
configuration in between each of the nominal configurations
(i.e., with a random configuration as qprior). We then compare
the point clouds for each nominal configuration gathered in these
two ways. In the case where there is no hysteresis effect, these
would result in the same shapes. Instead, the difference between
the two is a CD of 0.04± 0.1 m and an end-tip position distance
of0.018± 0.013m (9± 6.5%of robot length), averaged over all
2773 configurations. This implies that our tendon-driven robot
displays significant hysteresis. One example of the difference is
shown in Fig. 1, top right.

C. Loss Function Evaluation

To evaluate the impact of our loss function Ltendon, we
train our method with a variety of loss functions and compare
their performance. We compare our model trained with Ltendon

against models trained with a standard Mean Squared Error
(MSE) loss, EMD loss, and CD by itself as a loss function.
In Fig. 4 we show examples of the models’ outputs evaluated on
one hysteresis configuration as a qualitative example.

Quantitatively, we evaluate the outputs of the model on our 50
test cases. The model trained with the MSE loss fails to model
the robot’s shape, achieving an average CD of 1.134± 0.167 m
from the ground truth point clouds. The model trained with the
EMD loss generates point clouds evenly distributed along the
robot’s length but struggles to capture the complete shape of
the robot, resulting in an average CD of 0.0163± 0.0055 m.
While the CD only loss function produces point clouds that start
to approximate the robot’s geometry, the resulting points are
unevenly distributed along the shape. The CD for the model
trained on this loss function is 0.0084± 0.0065 m. The model
trained on our proposed loss function, EMD + CD (Ltendon),
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Fig. 5. Physics-based predicted robot shape (blue) vs. ground truth (red). Three
examples are shown from the test set, the worst (left), the median (middle), and
the best (right). These demonstrate the ranges of error between the physics-based
predicted shape and the ground truth sensed shape.

shows the best performance both qualitatively and quantitatively.
It achieves an average CD of 0.0057± 0.0024 m, displaying a
precise estimation of the robot’s shape with evenly distributed
point clouds. We find that our proposed loss function (Ltendon)
provides point clouds that are 199, 2.9, and 1.47 times closer to
the ground truth on average than the MSE, EMD, and the CD
loss functions, respectively.

D. Comparison to Physics-Based and Non-Hysteresis Models

We compare against both a physics-based model and a version
of our model that does not account for hysteresis. We do so in two
experiments, the first where we evaluate on a large number of
independent hysteresis configurations and the second in which
we evaluate on a smaller set of cohesive, sequential trajectories
in the robot’s workspace.

1) Comparison Method Details: We first compare against the
state-of-the-art physics-based method of [6], which is an exten-
sion of the model proposed in [5] to use tendon displacements
rather than tension as the input. We obtained an initial guess of
the backbone Young’s modulus E by hanging weights on one
straight routed tendon, and optimizing E to best fit the shape of
the manipulator. Then, we calibrated the model on a subset of
30 of the neural network training cases. The eight parameters
we calibrated are the backbone Young’s modulus E, Poisson’s
ratio ν, mass density ρ, tendon complianceCt and tendon offsets
[δ1, . . . , δ4] which represent potential tension/slack in the home
configuration. The physics-based model produces a backbone
shape representation. To generate a point cloud representation of
the full robot from the model we radially expand the backbone
shape to the diameter of the robot, attach the 9 circular disks
along the backbone in simulation, and create a point cloud
of the resulting geometry (see Fig. 5). We optimize the eight
parameters using pattern search to best match the collected point
clouds from the training set.

We also compare against a version of our model that does not
account for hysteresis (labeled here as the non-hysteresis model).
To do so, we change the model’s input from the two configuration
pair (the hysteresis configuration) to a single configuration—as
in traditional forward kinematics—keeping the rest of the net-
work architecture the same. We train the model on the nominal
configurations collected by returning to the home configuration
in between each.

2) Timing Evaluation: To demonstrate the value of our deep
decoder network outputting the full shape of the robot directly,
we first evaluate the time required by the various methods
to compute the full shape of the robot. All computation was
performed on a computer with an AMD Ryzen 7 3700X 8-core

Fig. 6. Boxplot comparison of the physics-based model, the non-hysteresis
model, and our full model that accounts for hysteresis (labeled Hysteresis
here) across the 50 test cases. The physics-based model achieves an aver-
age CD of 0.0374± 0.019 m. The non-hysteresis model achieves a CD of
0.013± 0.007 m while our full model achieves 0.0057± 0.0024 m.

Fig. 7. Three examples (the worst, the median, and the best cases from the
50 test cases) comparing the performance of the non-hysteresis (a) and our full
model (b). While the non-hysteresis model shows good qualitative performance,
our full model estimates the robot’s shape more accurately.

processor, 64GB of 3200Hz DDR4 DRAM, and an NVIDIA
GeForce RTX 3060 Ti.

Our model requires an average total training time of 6 min-
utes 2 seconds (averaged across 10 runs). After training, in
deployment our model requires a computation time of 0.32±
0.00004 ms from the configuration input to outputting the full
predicted robot shape, averaged across 100 runs. For the same
evaluation, the non-hysteresis model demonstrates an average
computation time of 0.33± 0.00011 ms. By contrast, it takes
on average 613± 206 ms to generate a point cloud from the
physics-based model. This is broken up as 394 ms to get the
backbone shape from the model and then an additional 219 ms to
augment the backbone with the rest of the robot geometry’s point
cloud. Our model demonstrates substantial speedup, producing
full robot shapes ≈ 1, 915 times more quickly.

3) Single Hysteresis Configuration Evaluation: We next
evaluate model accuracy. We show qualitative results for the
physics-based model in Fig. 5. We show quantitative results in
Fig. 6 comparing all three methods with additional qualitative
results for our model and the non-hysteresis model shown in
Fig. 7.

Qualitatively (see Figs. 5 and 7), the physics-based model
performs the worst, the non-hysteresis model the next best,
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Fig. 8. An example trajectory test case (the 1st of the 6 trajectory cases) com-
paring the performance of (a) the physics-based model, (b) the non-hysteresis
model, and (c) our hysteresis model. The order of the robot trajectory is
indicated in (a) using numbers 1 through 5, and this sequence is consistent
across all three subfigures. The physics-based model performs the worst, with
the non-hysteresis model improving upon the physics-based model, while our
model shows improvement over both.

and our full model performing the best, more closely capturing
the robot’s shape. Quantitatively, as can be seen in Fig. 6,
when evaluated on our 50 test data points our model with
hysteresis significantly outperforms the other two. The physics-
based model performs the worst, resulting in an average CD of
0.0374± 0.019 m from the ground truth. The non-hysteresis
model achieves a CD of 0.013± 0.007 m while our hysteresis
model achieves 0.0057± 0.0024 m. On average, our proposed
method produces shapes that are 6.6 times closer to the ground
truth than the physics-based model and 2.3 times closer than the
non-hysteresis models.

As CD, being a sum over many point pair distances, is a po-
tentially unintuitive metric, we additionally evaluate end-tip po-
sition error. The physics-based model exhibits 0.019± 0.008 m
end-tip position error (9.5± 4% of robot length), the non-
hysteresis model 0.01± 0.004 m (5± 2% of robot length), and
our model 0.0076± 0.0037 m (3.8± 1.85% of robot length).
However, note that CD serves as a more precise metric than the
end-tip position error, given we calibrate/train all the models
based on the complete shape of the robot, rather than solely
focusing on the end-tip position error.

4) Full Trajectory Evaluation: For tendon-driven robots to
be effectively used in real-world applications, it is imperative
that the model accurately predicts the robot’s shape as it executes
trajectories in its environment.

In this section we evaluate our method’s ability to predict
the robot’s shape across full trajectories, composed of a number
of sequentially chosen random configurations. Here we aug-
ment the model’s training data by supplementing Dhys with a
random trajectory dataset consisting of 1200 data points. This
dataset consists of configurations randomly selected from the
nominal set without returning to qhome between configurations
or between pairs of configurations.

We evaluate our model’s performance compared with the
physics-based model and the non-hysteresis model using 6
trajectories not seen during training, each comprising 5 differ-
ent sequential randomly-sampled configurations. Qualitatively,
as can be seen in Fig. 8, our model accurately estimates the
robot’s shape for the entire trajectory, outperforming the other
comparison methods. Fig. 9 shows the quantitative result for
all three methods. The physics-based model achieves a CD
of 0.044± 0.042 m from the ground truth averaged over all
6 trajectory cases (i.e., 30 configurations). The non-hysteresis
model displays an average CD of 0.015± 0.006 m, performing

Fig. 9. For the full trajectory evaluation, boxplot comparison of CD averaged
across all configurations in all 6 trajectories for the physics-based model, the
non-hysteresis model, and our model (labeled Hysteresis here). The physics-
based model achieves an average CD of 0.044± 0.042 m. The non-hysteresis
model achieves 0.015± 0.006 m while our model achieves 0.009± 0.003 m.

better than the physics-based model. Our model exhibits the best
performance with an average CD of 0.009± 0.003m, producing
shapes that are 4.9 and 1.7 times closer to the ground truth
on average than the physics-based and non-hysteresis models,
respectively. The end-tip position error measurement shows
0.02± 0.012m (10± 6% of robot length) for the physics-based
model, 0.011± 0.004 m (5.5± 2% of robot length) for the
non-hysteresis model, and 0.009± 0.004 m (4.5± 2% of robot
length) for our model.

VII. CONCLUSION

We proposed a deep decoder neural network model that
computes the forward kinematics of tendon-driven continuum
robots. The model directly outputs a full shape representation of
the robot in the form of a point cloud. By augmenting the input
with a prior configuration in addition to the current configu-
ration, the model is able to successfully account for hysteresis.
We evaluate the accuracy of our method in predicting the robot’s
shape and compare against a physics-based model and a model
that does not account for hysteresis, significantly outperforming
both.

In future work, we plan to develop a new approach that
accounts for the entire past trajectory of the robot rather than a
short history, and to leverage the model in control and planning
for these robots, in methods such as, e.g., [16], [44]. We plan
to address dynamic conditions of anatomical environments, in-
cluding hysteresis changes and tissue disturbance due to contact.
Future work will focus on validating the effectiveness of the
proposed method within anatomical environments to ensure its
robustness and accuracy in real-world medical applications. We
also intend to apply the method to other continuum robots,
such as concentric tube robots, longer catheter systems, and
tendon robots with various other nonlinear tendon routings, to
further validate the model’s applicability across various medical
domains.

Further, point clouds as an output geometric shape repre-
sentation are popular in other domains, and are particularly
well-motivated in applications that leverage nearest-neighbor
data structures for collision detection in planning and con-
trol [14], [15], but are not the only choice for geometric shape
representation. Voxel sets and signed distance functions, among
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others, are options as well. We intend to further explore the ways
in which a learned model can output the robot’s shape directly
using representations such as these.

We believe that this new approach takes steps toward over-
coming the limitations of current approaches in modeling the
shape of tendon-driven robots. This has the potential to lead
to more accurate and efficient prediction of the tendon robot’s
shape, unlocking the door to safer operation and improved
capabilities for these robots.
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